Виды огнеупорной смеси для кладки печей и каминов. Технология изготовления огнеупорного кирпича: компоненты и процесс создания материала

Чтобы выполнить кладку печи, необходимо иметь под рукой материалы, обладающие огнеупорными свойствами. Как правило, это кирпич и огнеупорный раствор для печи. Если кирпич является штучным материалом, то раствор нужно еще приготовить. Можно приобрести готовую кладочную смесь в специализированных магазинах или приготовить смесь самостоятельно, соблюдая определенный свод технических правил и технологических рекомендаций.

Глина является основным компонентом раствора для кладки печи.

Залежи глины встречаются практически во всех регионах нашей страны. Основными местами, где можно найти качественную глину, являются крутые берега рек и оврагов. При проведении земляных работ на глубине более 500 мм тоже можно наткнуться на слои глины. Глина бывает жирной, средней степени жирности (нормальной) и тощей. Лучшим вариантом будет использование нормальной глины, так как в случае применения раствора с жирной глиной при его высыхании произойдет значительная усадка с последующим образованием трещин в кладке печи. Использование тощей глины снизит пластичность и повысит хрупкость смеси, что приведет к разрушению швов. Оба варианта чреваты неприятным проникновением едкого дыма в ваше жилище.

Проверка свойств основного ингредиента огнеупорной смеси

Для проверки качества глины существует несколько проверенных методик:

  1. Берут около 1 кг сухой глины (0,5 л) и порционно вливают в нее воду, перемешивая ее руками. Глина должна полностью впитать в себя воду и представлять собой раствор крутой консистенции. Следующим этапом является скатывание шаров диаметром 4-5 см. Из полученного шара делают лепешку диаметром 9-10 см. Все это сушится естественным путем в течение 3-4 дней. Далее осматривают на предмет обнаружения поверхностных трещин. Выявление на шарике и лепешке трещин свидетельствует о повышенной жирности материала. Если трещин на шаре и лепешке не выявлено, то необходимо уронить шар с высоты не более 1 м. Сохранение целостности шаром после падения свидетельствует о качестве глины, а разрушение показывает, что глина тощая.
  2. Берут примерно 3,6-5,4 кг глины (2-3 л) и высыпают ее в емкость, тщательно перемешивая деревянной лопаткой и разминая комки. Если глина довольно хорошо прилипает к лопатке, значит, она имеет большую жирность. В такой раствор нужно всыпать немного песка. Если на лопатке глина остается частично, то такой материал считают качественным и пригодным к применению. Слабое прилипание смеси говорит о том, что смесь тощая и требует внесения жирной глины.
  3. Берут до 1 кг сухой глины (примерно 0,5 л) и готовят густой раствор, тщательно перемешивая руками. Из полученного состава готовят шары диаметром 4-5 см. Далее берут две гладкие пластины из ДСП или дерева, кладут шарик на одну из них, накрывают другой и сдавливают до появления трещин на шарике. Контроль испытания:
  • если шарик разрушился при малейшем нажиме, значит, глина тощая;
  • если при сдавливании до 1/4-1/5 диаметра шара появляются трещины, то глина имеет слабую жирность;
  • если при сдавливании до 0,3 диаметра шара появляются трещины, то смесь нормальная и пригодна к дальнейшему использованию;
  • жирная глина дает трещины при сжатии до 0,5 диаметра шара.
  1. Из полученного крутого раствора делают шар и раскатывают до образования колбасок диаметром 1-1,5 см и длиной 160-200 мм. Далее выполняют их растягивание до разрыва. Образец из тощей глины практически не растягивается и дает довольно неровный разрыв. Нормальная глина характеризуется плавным растяжением и дает разрыв при утонении до 20% исходного образца. Жирная глина, наоборот, вытягивается постепенно и дает плавный разрыв с образованием острых концов в месте разрыва.

Подготовка компонентов для приготовления кладочной смеси

Проверка пластичности раствора: 1-пластичный, 2- недостаточно пластичный, 3 — рыхлый.

Для достижения необходимой жирности производят смешивание различных типов глин или добавление песка, контролируя жирность по вышеописанным методам. Огнеупорную глину, отобранную на приготовление раствора, обязательно просеивают через сито с ячейкой от 2 до 3 мм для удаления примесей и крупных частиц. Это обосновывается тем, что нормативная толщина шва при выполнении кладки печи должна равняться 3 мм. Поэтому крупные частицы в составе раствора будут мешать осуществлению кладки.

Есть еще один метод для очистки глины. Берут продолговатое корыто и устанавливают его под углом 5-10°. На приподнятую часть помещают слой глины, а в нижнюю наливают воду. Потом ковшом или кельмой делают намывку воды на слой глины до полного растворения последней. Полученный раствор процеживают в отдельную емкость, глину отстаивают и сушат.

В жирные глины по технологии надо добавить песок, который требует приготовления. Песок может быть трех видов: речной, морской и обычный карьерный (горный), что добывается в промышленных карьерах и на склонах естественных оврагов. Приготовление раствора лучше делать с добавлением карьерного песка. Он обеспечивает лучшее сцепление сопрягающихся поверхностей кирпичной кладки и компонентов раствора. Песок также нужно просеять на решетке с величиной ячейки 1,5 мм. После просеивания делают промывку песка от примесей. Для этого берут мешковину и натягивают ее на прямоугольную рамку толщиной 70-100 мм. Рамку кладут на подставку. На поверхность мешковины насыпают песок и промывают водой из шланга.

Приготовление огнеупорной кладочной смеси

Как только все подготовительные работы закончены, можно выполнить приготовление смеси для кладки печи. Существует несколько способов приготовления:

  1. Подготовленную глину замачивают в течении 3-х дней в герметичной емкости. Далее надевают непромокаемую обувь (резиновые сапоги) и вымешивают до однородной консистенции, добавляя в нужных пропорциях песок. Неразмешанные сгустки глины разбивают трамбовкой. Далее однородный глиняный состав прощупывают руками на наличие инородных частиц и кусков глины. Правильно вымешанный раствор должен легко стекать с металлической поверхности шпателя или мастерка, не приставая к ней. Качественный раствор должен начать схватываться через 4-6 минут. Поверхность деревянного черенка, опущенного в смесь, должна иметь незначительные следы от глины. Жирный глиняный состав оставит значительные следы, а тощий — вовсе не прилипнет к черенку.
  2. Второй способ применяют только тогда, когда глиняный состав не требует дополнительного внесения песка и имеет нормальную жирность. Для приготовления нужно иметь под рукой деревянный щит. На щит выкладывают глину и поливают водой. Как только глина напитается влагой и размякнет, ее перелопачивают. Для этого формируют узкие возвышения разной длины и высотой 30-40 см. По этим возвышениям наносят удары лопатой, отрезая части гряды. Такие манипуляции разбивают комочки. Нерастворимые частицы и камни удаляют вручную. Потом массу опять перемешивают и повторяют операцию от 4 до 6 раз до полного перемешивания и удаления камней.
  3. Приготовление смеси для кладки с добавлением в глину песка. Для этого песок насыпается грядкой, в которой делаются углубления. В эти углубления вносят глину, заливают водой, присыпают слоем песка и ждут, пока глина впитает воду. Далее гряду перемешивают и разминают лопатой так же, как и в предыдущем случае, до однородной консистенции. Пропорции песка и глины должны быть такими, чтобы глина полностью скрепила все песчинки. Для повышения качества раствора его процеживают через сито.

Огнеупорная смесь для финишной отделки

После окончания кладки печи нужно выполнить финишную отделку наружной поверхности печи. Для этого требуется сделать раствор для штукатурных работ. Есть несколько рецептур приготовления сухой штукатурной смеси:

  1. Смешать 1 часть огнеупорной глины, 1 часть извести, 2 части песка и 1/10 часть асбестовой пушонки.
  2. Замесить 1 часть сухой глины, 2 части песка, 1 часть цемента марки 400 и 1/10 часть асбестовой пушонки.
  3. Смешать 1 часть обычного гипса, 1 часть мелкого песка, 2 части извести и 2/10 части асбестовой пушонки.

Теоретические основы производства огнеупорных мате­риалов впервые были изложены академиком А. А. Бай­ковым, который рассматривал процесс превращения по­рошкообразной массы в твердый кристаллический сро­сток как процесс перекристаллизации огнеупорного ма­териала в жидкой фазе при определенной температуре. В основных чертах этот процесс подобен процессу за­твердевания цемента, смешанного с водой. Поэтому ог­неупорные материалы можно назвать «цементами высо­ких температур», а готовые огнеупорные изделия из них - «бетонами высоких температур».

При производстве огнеупорных изделий массу, со­стоящую из огнеупора определенного химического со­става и связующего вещества подвергают формовке, сушке и обжигу. В процессе формовки изделию прида­ется заданная форма на специальных формовочных прессах. При сушке удаляется излишняя влага, и изде­лие приобретает некоторую начальную прочность. Про­цесс обжига можно разделить на три периода: во время первого периода температура постепенно повышается до некоторой достаточно высокой, определяемой химиче­ским и минералогическим составом массы; во втором периоде, достаточно продолжительном, температура поддерживается на заданном уровне; в третьем периоде температура снижается до нормальной, и обожженные изделия охлаждаются.

Наибольшее значение для качества изделия имеет второй период. В начале его обжигаемое изделие пред­ставляет собой массу, состоящую из отдельных зерен или крупинок огнеупорного материала, пропитанных и смоченных небольшим количеством расплава. Эта жид­кая фаза образовалась при взаимодействии главного окисла, являющегося огнеупорным материалом, со все­ми примесями, имеющимися в массе. Количество обра­зованного расплава зависит от температуры и количест­ва примесей, причем чем выше температура обжига во втором периоде и больше примесей, тем больше образу­ется расплава. В результате перекристаллизации в ра­сплаве в конце второго периода твердые частицы обра­зуют плотный кристаллический сросток. При этом масса утрачивает свою рыхлость и приобретает механическую прочность. Такое превращение совершается при постоян­ной температуре (которая ниже температуры плавления огнеупора) путем перекристаллизации огнеупорного ма­териала в небольшом количестве жидкой фазы.

Степень растворения основного окисла в расплаве, а следовательно, и полнота его перекристаллизации зави­сят от степени дробления исходного материала, так как с уменьшением размера зерен растворимость их увели­чивается. Твердое тело с правильной кристаллической ре­шеткой обладает меньшей растворимостью, чем тело с деформированной решеткой. Деформация кристалличе­ской решетки может наступить во время обжига либо вследствие полиморфного превращения, сопровождаемо­го значительным изменением объема, либо в результате разложения химического соединения, входящего в со­став исходного материала.

Условия, соблюдение которых необходимо для полу­чения качественных огнеупорных изделий, сформули­рованные А. А. Байковым, следующие:

  • наличие в шихте таких примесей, с которыми ог­неупорный материал может давать расплав и может в нем растворяться;
  • обжиг при температуре, обеспечивающей образо­вание требуемого количества расплава;
  • выдержка при температуре обжига в течение вре­мени, достаточного для завершения процесса перекри­сталлизации.

Классификация огнеупорных материалов

Огнеупорами называются строительные материалы, деформирующиеся при температуре не ниже 1580° С и способные противостоять длительному воздействию вы­соких температур без изменения своих физико-механических свойств.

При сооружении металлургических печей наряду с обыч­ными строительными материалами - железобетоном, бетоном, строительным кирпичом - широко использу­ются материалы специального назначения - огнеупор­ные, теплоизоляционные, жаропрочные металлы. Из них наибольшее значение в металлургии имеют огнеупоры, так как металлы и сплавы в большинстве случаев по­лучают при высокой температуре, и производительность печей во многом зависит от качества применяемых ог­неупоров.

По химико-минералогическому составу

По химико-минералогическому составу огнеупоры делятся на следующие группы.

  • Кремнеземистые - динасовые (не менее 92% SiO 2), изготавливаемые из кварцитовых материалов (главным образом из кварцита).
  • Алюмосиликатные , изготавливаемые из огнеупорных глин и каолинов, к которым относятся шамот (до 45% Al 2 O 3) и высокоглиноземистые огнеупоры (свыше 45% Al 2 O 3).
  • Магнезиальные , изготавливаемые из минералов, со­держащих магнезит, с различными связующими добав­ками. Сюда входят магнезитовые (не менее 85% MgO), доломитовые (не менее 35% MgO и 40% CaO), форстеритовые (от 35 до 55%MgO и Cr 2 O 3), шпинельные(MgO и Al 2 O 3 в молекулярном соотношении) огне­упоры.
  • Хромистые , к которым относятся хромитовые (око­ло 30% Cr 2 O 3) и хромомагнезитовые (10 - 30% Cr 2 O 3 и 30 - 70% MgO) изделия.
  • Углеродистые , в состав которых входит в том или ином количестве углерод, - графитовые (30 - 60% С), коксовые (70 - 90% С).
  • Цирконистые : циркониевые, изготавливаемые из ZrO 2 и цирконовые, изготавливаемые из минерала Zr 2 O 3 SiO 2 .
  • Окисные - изделия из окиси бериллия, окиси тория и окиси церия.
  • Карбидные и нитридные , к которым относятся кар­борундовые (30-90% SiC) огнеупоры и огнеупоры из нитридов, карбидов и сульфидов.

По степени огнеупорности

По степени огнеупорности материалы делятся на три группы:

  • огнеупорные (1580-1750° С);
  • высо­коогнеупорные (1770-2000° С);
  • высшей огнеупор­ности (>2000° С).

Согласно ГОСТ 4385 - 68 материалы огнеупорные в свою очередь делятся на классы:

  • Класс 0 — огнеупорность не менее 1750° С;
  • Класс А — огнеупорность не менее 1730° С;
  • Класс Б — огнеупорность не менее 1670° С;
  • Класс В — огнеупорность не менее 1580° С.

По термической обработке

По термической обработке огнеупорные изделия делятся на:

  • обжиговые (обожженные после формовки);
  • безобжиговые;
  • литые плавленые.

По способу изготовления

По способу изготовления огнеупоры делятся на:

  • формованные - форма придается при изготовлении (изделия огнеупорные и теплоизоляционные);
  • не­формованные - форма приобретается в процессе приме­нения (огнеупорные бетоны, набивные массы, обмазки);
  • огнеупорные растворы - наполнители швов огне­упорной кладки.

По сложности формы и размерам

По сложности формы и размерам штучные огне­упорные изделия делятся на следующие виды:

  • нормаль­ный кирпич;
  • фасонное изделие;
  • крупные блоки;
  • спе­циальные изделия (тигли, трубки и т. и.).

Основные свойства огнеупорных материалов

Пригодность тех или иных огнеупоров в каждом отдельном случае оценивается в зависимости от их основных физических и рабочих свойств.

Рабочими называют свойства огнеупоров, удовлетворяющие требованиям, предъявляемым в данном конкретном случае. Основными свойствами огнеупоров являются огнеупорность, термическая стойкость, химическая стойкость, деформация под нагрузкой при высокой температуре и постоянство формы и объема, пористость, газопроницаемость, теплопроводность, электропроводность.

Огнеупорность

Огнеупорностью называется способность материалов выдерживать высокие температуры, не деформируясь под действием собственного веса. При нагреве огнеупорный материал вначале размягчается вследствие плавления его легкоплавкой составляющей. При дальнейшем нагреве начинает плавиться основная масса, и вязкость материала постепенно уменьшается. Процесс плавления огнеупоров выражается в постепенном переходе из твердого состояния в жидкое, причем температурный интервал от начала размягчения до расплавления иногда достигает нескольких сот градусов. Поэтому для характеристики огнеупорности пользуются температурой размягчения.

Для этой цели при определении огнеупорности материалов используются керамические пироскопы (ПК). Пироскопы представляют собой трехгранные усеченные пирамиды высотой до 6 см с основанием в виде равностороннего треугольника со сторонами, равными 1 см.

Каждому пироскопу соответствует определенная температура размягчения, т. е. температура, при которой пироскоп размягчается настолько, что вершина его касается подставки (рис. 84). В маркировке пироскопов указывается его огнеупорность, уменьшенная в десять раз. Для определения огнеупорности материала из него изготавливают пирамидку по размерам пироскопа. Испытуемый образец вместе с несколькими пироскопами разных номеров устанавливают на подставке и помещают в электрическую печь. Испытание на огнеупорность сводится к наблюдению за размягчением (падением) образцов сравнительно с пироскопами при определенных условиях нагрева. Огнеупорность материала обозначается номером того пироскопа, с которым образец упал одновременно.

Деформация под нагрузкой при высоких температурах

В кладке печи огнеупоры испытывают в основном сжимающее усилие, увеличивающееся при нагреве печи. Для оценки механической прочности огнеупоров обычно определяют зависимость изменения величины деформации от температуры при постоянной нагрузке (рис. 85).

Испытания проводят на цилиндрическом образце высотой 50 и диаметром 36 мм при постоянной нагрузке 1,96 10 5 Па. Результаты испытания представляют в виде графика зависимости изменения высоты образца от температуры. Для характеристики деформации отмечают температуру начала размягчения, когда высота образца уменьшается на 4%, температуру, соответствующую изменению высоты на 40%, и температурный интервал размягчения, представляющий разность этих двух температур.

Постоянство формы и объема

При нагреве огнеупоров в печах происходит изменение их объема под влиянием двух факторов - термического расширения и усадки (или роста). Термическое расширение большинства огнеупоров невелико. Гораздо значительнее изменение объема огнеупора при высоких температурах за счет происходящих превращений. Так, шамотные изделия дают усадку в результате образования некоторого количества жидкой фазы и уплотнения черепка. Обычно это уменьшение объема бывает больше, чем его термическое расширение, и приводит к увеличению швов. Динасовые изделия увеличивают объем при нагреве вследствие дополнительных процессов перекристаллизации. Рост объема изделия в процессе службы способствует уплотнению швов кладки. Изменение объема огнеупоров оценивают при нагревании точно измеренных образцов в печи.

Термическая стойкость

Термической стойкостью называется способность огнеупоров не разрушаться при резких изменениях температуры. Это особенно важно для огнеупоров, работающих в печах периодического действия. Термическая стойкость огнеупоров тем выше, чем больше коэффициент теплопроводности материала, его пористость и размер зерен и чем меньше температурный коэффициент линейного расширения, плотность, размеры изделия и изменения объема при аллотропических превращениях.

Для определения термической стойкости используют образец в форме кирпича. Образец нагревают 40 мин при 850° С, затем охлаждают 8- 15 мин. Цикл нагрева и охлаждения называется теплосменой. Охлаждение может быть только на воздухе (воздушные теплосмены) или сначала в воде 3 мин, затем на воздухе 5- 10 мин (водяные теплосмены). Нагрев и охлаждение проводятся до тех пор, пока потеря массы образца (из-за откалывания кусков) не достигнет 20%. Термическая стойкость оценивается количеством выдержанных теплосмен.

Химическая стойкость

Под химической стойкостью огнеупорных материалов понимается способность их противостоять разрушению от химического и физического воздействия образующихся в печи продуктов - металла, шлаков, пыли, золы, паров и газов. Наибольшее действие на огнеупоры в плавильных печах оказывают шлаки. По отношению к действию шлаков огнеупоры могут быть разделены на три группы - кислые, основные и нейтральные.

Кислые огнеупоры устойчивы к кислым шлакам, содержащим большое количество SiO 2 , но разъедаются основными шлаками. Кислым огнеупором является динас. Динас устойчив к действию окислительных и восстановительных газов.

Основные огнеупоры устойчивы к действию основных шлаков, но разъедаются кислыми. К ним относятся огнеупоры, содержащие известь, магнезию и щелочные окислы (доломит, магнезит и др.).

Нейтральные (промежуточные) огнеупоры , в состав которых входят аморфные окислы, реагируют как с кислыми, так и с основными шлаками, нв значительно меньшей степени, чем кислые и основные. К ним относится хромистый железняк, содержащий в качестве основной составляющей FeO·Cr 2 O 3 .

Шлакоустойчивость

Шлакоустойчивость огнеупоров зависит от скорости химических реакций огнеупора со шлаком и от вязкости шлака. При вязких шлаках и малой скорости реакций огнеупорное изделие может работать хорошо. С повышением температуры скорость химических реакций увеличивается, а вязкость шлаков уменьшается, поэтому даже небольшое повышение температуры (на 25-30° С) приводит к существенному увеличению коррозии огнеупоров. Пористые изделия с открытыми порами менее шлакоустойчивы, чем более плотные. Наружная гладкая поверхность корки кирпича лучше сопротивляется действию шлаков, чем шероховатая поверхность изломов. Трещины в изделии также понижают его шлакоустойчивость.

Для определения шлакоустойчивости применяют два метода - статический и динамический. При статическом методе в огнеупорном изделии высверливают цилиндрическое отверстие, в которое насыпают тонкоизмельченный шлак. Изделие нагревают в печи до его рабочей температуры (но не ниже 1450° С) и выдерживают при этой температуре 3-4 ч. О шлакоустойчивости судят качественно по степени растворения изделия в шлаке и глубине его проникновения в изделие. При динамическом методе на испытуемый огнеупорный кирпич, установленный в печи вертикально, при температуре 1450° С в течение 1 ч сыпят порошкообразный шлак (1 кг). Расплавляясь и стекая по поверхности кирпича, шлак проедает в нем борозды. Шлакоразъедаемость определяется по потере объема (в кубических сантиметрах) с учетом дополнительной усадки кирпича.

Теплопроводность

В зависимости от целей, для которых используется огнеупор, теплопроводность его должна быть высокой или низкой. Так, материалы, предназначенные для футеровки печей, должны иметь низкую теплопроводность для уменьшения тепловых потерь в окружающее пространство и повышения к. п. д. печи. Однако материалы для изготовления тиглей и муфелей должны иметь высокую теплопроводность, уменьшающую перепад температуры в их стенках.

При повышении температуры теплопроводность большинства огнеупоров возрастает (рис. 86). Исключение составляют магнезитовые, и карборундовые изделия, теплопроводность которых при этому меньшается. Теплопроводность всех огнеупоров уменьшается с увеличением пористости. Однако при высокой температуре (выше 800-900° С) увеличение пористости мало влияет на теплопроводность. Приобретают влияние конфигурация и размер пор, определяющие конвективную теплопередачу внутри пор. Увеличение содержания кристаллической фазы в материале приводит к увеличению теплопроводности.

Электропроводность

Электропроводность является определяющим параметром огнеупоров, применяемых для футеровки электрических печей. При нормальных температурах обычно все огнеупорные материалы являются хорошими диэлектриками. При повышении температуры их электропроводность быстро возрастает, и они становятся проводниками. Электропроводность материалов с большой пористостью при высоких температурах уменьшается.

Теплоемкость

Теплоемкость огнеупоров определяет скорость нагрева и охлаждения футеровки и затраты тепла на нагрев. Это имеет особенно важное значение при работе печей периодического действия. Теплоемкость зависит от химико-минералогического состава огнеупоров. Определяется она калориметрическим методом. Теплоемкость обычно незначительно растет с увеличением температуры. Среднее ее значение лежит в пределах 0,8-1,5 кДж/(кг·К).

Пористость

Все огнеупорные изделия пористы. Размер пор, их структура и количество весьма разнообразны. Отдельные поры либо соединены между собой и с атмосферой, либо представляют собой замкнутые пространства внутри изделия. Отсюда различают пористость открытую , или кажущуюся, при которой поры сообщаются с атмосферой, пористость закрытую , когда поры не имеют выхода наружу, и пористость истинную , или общую, т. е. суммарную.

Открытую пористость вычисляют на основе данных измерения водопоглощения и объемной массы огнеупорных изделий.

Газопроницаемость

Газопроницаемость зависит от природы огнеупора, величины открытой пористости, однородности структуры изделия, температуры и давления газа. С повышением температуры газопроницаемость огнеупоров понижается, так как объем газа при этом возрастает и увеличивается его вязкость. Огнеупоры должны обладать возможно меньшей газопроницаемостью, особенно те, которые применяются для изготовления реторт, муфелей, тиглей. Наибольшая газопроницаемость у шамотных изделий, наименьшая у динаса.

Плотность и объемная масса

Плотность материала - это отношение массы образца к занимаемому им объему за вычетом объема пор. Объемная масса - это отношение массы высушенного при 105° С образца к занимаемому им объему, включая объем пор.

Внешний вид и структура

Все огнеупорные изделия делятся на сорта в соответствии с разработанными стандартами. Сорт огнеупорных изделий устанавливают по величине отклонения от установленных размеров, кривизне, отбитости углов, притупленности ребер, наличию отдельных выплавок, ошлакованности, просечкам и трещинам. Отклонения в размерах допускаются в пределах норм, указанных в соответствующих стандартах в зависимости от сортности. Кривизна изделий определяется стрелой прогиба. Очевидно, что чем больше будет кривизна, тем менее плотной окажется кладка. Отбитость углов и притупленность ребер также отрицательно влияют на качество кладки.

Выплавка представляет собой местное оплавление поверхности огнеупора с образованием «каверны». Причиной выплавок является недостаточно хорошее перемешивание шихты при изготовлении огнеупора. В местах выплавок происходит быстрое разрушение шлаками даже при сравнительно низкой температуре, поэтому число выплавок на поверхности изделия строго ограничивается.

Ошлакованность образуется на поверхности изделия в виде наростов как результат загрязнения ее при обжиге песком, глиной и т. д. Наличие ошлакованности на поверхности изделий также ограничивается.

Просечки (разрывы шириной до 0,5 мм) и трещины (разрывы шириной больше 0,5 мм) на поверхности огнеупорных изделий увеличивают коррозию шлаками и уменьшают их механическую прочность. Они образуются в процессе обжига при неосторожном нагреве илиохлаждения изделия.

Огнеупорный материал хорошего качества должен иметь в изломе однородное строение без пустот и расслоений. Зерна разных фракций должны равномерно распределяться по поверхности излома, не выпадая и легко не выкрашиваясь.

При выборе того или иного материала необходимо руководствоваться основными требованиями к нему в каждом конкретном случае. Так, материал для стенок и свода плавильной печи должен прежде всего обладать высокой механической прочностью. Для откосов печи следует применять огнеупор, более стойкий к действию шлаков, образующихся при данном металлургическом процессе.

При выборе огнеупоров следует учитывать их стоимость. Сравнительная стоимость 1 т некоторых огнеупорных кирпичей 1-го сорта по отношению к стоимости динасового кирпича следующая:

Транспортировка и хранение огнеупорных изделий

При доставке к потребителю правильные транспортировка и хранение готовых огнеупорных изделий обеспечивают их сохранность, хорошее качество кладки и неизменность рабочих характеристик. При перевозке в вагонах огнеупорный кирпич укладывается рядами плотно по всей площади вагона с расклиниванием. Между рядами прокладывается солома или древесная стружка. При перевозке в автомашинах кирпич также плотно укладывается рядами с расклиниванием деревянными клиньями. В последнее время применяется транспортировка кирпича в контейнерах, что улучшает его сохранность и облегчает погрузочно-разгрузочные работы. При транспортировке кирпичей к рабочим местам на транспортерах и лотках они не должны ударяться друг о друга и о детали транспортирующих устройств.

Мертели и порошки перевозят в контейнерах, бумажных мешках, или навалом в чистых вагонах.

Склады для хранения огнеупорных изделий должны быть закрытыми. При хранении на открытом воздухе вследствие попеременного увлажнения и высыхания, замерзания и оттаивания рабочие характеристики огнеупоров ухудшаются. Уменьшение сопротивления сжатию после года хранения на открытом воздухе составляет для шамота 27-30%, для динаса 35%, для магнезитовых изделий 30%. Допускается в летнее время хранить шамотные и динасовые изделия в полузакрытых складах. Огнеупорные порошки и мертели хранят в закрытых складах в отдельных закромах.

Неформованные огнеупоры и огнеупорные растворы

Неформованные огнеупоры представляют собой смеси порошкооб­разного огнеупорного наполнителя и связующей добавки.

Применение неформованных огнеупорных материалов позволяет упростить процесс футеровки металлургических печей, включая вы­полнение сложных элементов, повысить химическую стойкость фу­теровки и уменьшить ее газопроницаемость благодаря отсутствию швов, ускорить ремонт печей. Широкое применение они нашли при
устройстве пода и свода печей, футеровки индукционных печей, же­лобов для выпуска расплава и других элементов сложной конфи­гурации.

К неформованным огнеупорам относятся огнеупорные бетоны, пластичные и непластичные набивные массы.

Огнеупорные бетоны , в которых в качестве связующего мате­риала используют цементы, твердеют на воздухе при нормальной температуре в присутствии воды. Укладку бетона осуществляют при небольшом уплотнении. Получаемая высокая прочность на воз­духе не имеет стабильной керамической связи, подобно огнеупор­ным изделиям, поэтому бетон изменяет свою структуру и свойства при нагреве. Этим объясняется некоторое уменьшение прочности бетона при разогреве. В качестве цементов используются портланд­цемент, глиноземистый, магнезиальный и высокоглиноземистый цементы. Наполнителями могут быть различные огнеупорные мате­риалы, выбираемые в зависимости от условий работы и материала цемента. Огнеупорность бетона определяется огнеупорностью на­полнителя.

При применении в бетонах портландцемента следует учитывать уменьшение их прочности и разрушение при нагреве выше 600° С в связи с полиморфными превращениями компоненты цемента 2CaO SiO 2 . Введение стабилизирующих добавок, содержащих SiO 2 или Al 2 O 3 , позволяет получить бетон с достаточной механической
прочностью при нагреве. Бетоны на стабилизированном портланд­цементе с шамотным наполнителем могут использоваться до тем­пературы 1400° С, а с хромомагнезитовым наполнителем - до 1700° С.

Наиболее широко при изготовлении бетонов применяют глино­земистый цемент, обладающий большой скоростью твердения. Так как в процессе твердения бетон сильно разогревается, его нужно поливать водой. Для этого бетона характерна значительная потеря механической прочности при нагревании в интервале температур 500-1100° С, поэтому его следует применять при более высоких температурах. Бетоны на глиноземистом цементе с шамотным напол­нителем рекомендуется применять при температуре 1150-1400° С. Бетон на высокоглиноземистом и хромомагнезитовом наполнителе применяют при температуре 1400- 1700° С.

Магнезиальный цемент используется для изготовления высоко­огнеупорных бетонов при магнезитовом или хромомагнезитовом на­полнителе. Огнеупорность такого бетона 1900° С.

В последнее время стали применять бетоны на фосфатных связ­ках - ортофосфорной или фосфорной кислотах. В качестве наполни­телей в этом случае используются высококачественные полностью обожженные огнеупоры: высокоглиноземистый шамот, плавленый кремнезем высокой чистоты и др. Бетоны на фосфатной связке име­ют повышенную огнеупорность, высокую термостойкость и износо­стойкость. Эти бетоны быстро затвердевают и приобретают механи­ческую прочность при низких температурах и хорошо схватываются с различными огнеупорами.

В пластичных набивных массах связкой служат пластичные ог­неупорные глины. Наполнителями могут быть любые огнеупорные материалы. Наиболее широкое применение получили шамотовые, высокоглиноземистые, хромитовые и в особо ответственных случаях углеродистые материалы. Для пластичных набивных масс характерны значительные усадки при нагреве, что объясняется большим со­держанием глины. Прочность их возрастает по мере увеличения тем­пературы за счет изменений, происходящих в глинистой связке. Укладку набивных масс осуществляют ручным трамбованием или пневмотрамбовкой.

В непластичных набивных массах связующими веществами слу­жат водные растворы солей: сернокислый и хлористый магний, фос­форная кислота, различные фосфаты, борная кислота, жидкое стекло и некоторые органические вещества. Они обеспечивают временную небольшую прочность материала при нормальной температуре и об­разуют при высокой температуре плавни, ускоряющие перекристал­лизацию основного огнеупорного материала с получением большой прочности. Применение в качестве связующего вещества каменноугольного пека и смолы позволяет при нагреве создать углеродистую связку, повышающую сопротивляемость набивных масс разъедаю­щему действию расплавов.

Укладку непластичной огнеупорной набивной массы проводят под большим давлением пневмотрамбовкой, а при футеровке боль­ших площадей - вибратором. Огнеупорные набивные массы приме­няются в местах с тяжелыми условиями работы, где требуется вы­сокая износостойкость футеровки и шлакоустойчивость, а также в местах, где требуется высокая точность размеров. Они широко ис­пользуются для футеровки индукционных печей, изготовления подин печей, для выплавки цветных металлов, загрузочных отверстий вра­щающихся обжиговых печей, отверстий в сводах дуговых печей.

Огнеупорные растворы - это массы, используемые для заполне­ния швов в кладке печи, что обеспечивает ей механическую проч­ность и монолитность. По густоте растворы делятся на жидкие, полугустые и густые. Чем больше толщина шва, тем гуще должен быть раствор для его заполнения. Жидкие растворы применяются при
толщинах шва в 1-2 мм, что имеет место при очень плотных клад­ках. Требования, предъявляемые к свойствам растворов, - высокая огнеупорность, близкая к огнеупорности материала кладки, высокая температура начала размягчения и хорошая шлакоустойчивость.

Основные компоненты растворов - порошок огнеупорного мате­риала и пластичная огнеупорная глина, затворенные водой. Для ди­насовой кладки раствор составляют из тонкоразмолотого динасового порошка (85-90%) и высококачественной огнеупорной глины (10-15%); шамотный раствор содержит порошок шамота (70-85%) и
огнеупорную глину (15-30%) и т. д. При температуре выше 800° С происходит спекание раствора с материалом кладки. Растворы мо­гут быть приготовлены затворением водой готовых сухих смесей - мертелей, состав которых установлен ГОСТом. В некоторых случаях бывает необходимо получить прочную кладку при нормальной температуре. Это обеспечивается применением воздушно-твердеющих растворов и мертелей, получаемых добавлением в их состав це­ментов.

Растворы не применяются только для магнезитовых и хромо­магнезитовых огнеупоров. Их кладут насухо с засыпкой швов магнезитовым или хромомагнезитовым порошком.

Огнеупорные обмазки . Для уплотнения кладки и уменьшения ее газопроницаемости, а также для защиты кладки от воздействия печной среды и как изоляционное покрытие применяются огнеупор­ные обмазки. Отсюда по назначению обмазки можно разделить на три группы - уплотнительные, изоляционные и защитные.

Уплотнительные и изоляционные обмазки наносятся на предва­рительно очищенную наружную поверхность кладки слоем в 2-4 мм при температуре поверхности не выше 100°С. Защитными обмазками слоем в 2-3 мм покрывают внутреннюю поверхность кладки в ос­новном нагревательных и термических печей. Возможно использова­ние их для заделки небольших отверстий в кладке при горячем ре­монте, когда они наносятся под давлением с помощью специальных торкрет-аппаратов. Огнеупорные обмазки состоят из тонкодисперс­ных огнеупорных порошков, огнеупорных глин и клеящих веществ, обычно жидкого стекла. В состав уплотнительных и изоляционных обмазок вводят еще и асбест в количествах 15 и 40% соответствен­но. Схватывание и твердение обмазок происходит в результате вы­сыхания и спекания массы при нагреве.

Изделия высшей огнеупорности

Изделиями высшей огнеупорности являются изделия из чистых окислов, а также некоторые нитриды, карбиды, бориды и сульфи­ды. Потребность в них определилась использованием в современной технике тугоплавких редких металлов, таких как титан, цирконий, тантал, ниобий, молибден, уран, торий высокой чистоты.

Окисные огнеупоры. Окись бериллия (BeO) имеет температуру плавления 2530° С. Изделия из BeO, обожженные при 1900° С, от­личаются высокой термостойкостью и теплопроводностью, малой пористостью (кажущаяся пористость менее 6 %, причем открытая пористость отсутствует). Газопроницаемость их незначительна, поэтому они могут быть использованы в установках дистилляции ме­таллов в вакууме.

Окись тория (ThO 2) имеет температуру плавления 3300° С. Из­делия из ThO 2 , обожженные при температуре 1500° С, обладают большой плотностью и высокой огнеупорностью (3000° С), однако малой термической стойкостью, так как при малой теплопроводно­сти имеют большой коэффициент линейного расширения. Окись тория применяется для изготовления высокотемпературных нагрева­телей электрических печей сопротивления.

Карбиды . Карбиды многих металлов обладают высокой темпе­ратурой плавления и значительной химической стойкостью. Карбид титана (TiC) имеет температуру плавления 3140° С. Тигли из кар­бида титана с добавкой 1% Na 2 SiO 3 и 2,5% порошка железа при­меняются для плавки тугоплавких и химически активных металлов (натрий и др.).

Бориды . В металлургии нашли применение изделия из боридов циркония и хрома. Борид циркония (ZrB 2) имеет температуру плав­ления 3040° С. Изделия из борида циркония устойчивы к воздей­ствию азотной и соляной кислот, а также расплавленных металлов и солей.

Борид хрома имеет температуру плавления 1850° С. Изделия из борида хрома также устойчивы по отношению к химически ак­тивным металлам. Используется как материал для изготовления тиглей, чехлов термопар, сопел высокотемпературных горелок и др.

Сульфиды . Сульфид тория имеет температуру плавления более 2500° С. Тигли из сульфида бария применяются для плавки церия, тория, магния, алюминия.

Циркониевые и цирконовые огнеупоры

Огнеупоры, содержащие двуокись циркония, можно разделить на две группы - циркониевые огнеупоры и цирконовые. Циркониевые огнеупоры , состоящие преимущественно из двуокиси циркония (ZrO 2), изготавливаются из естественных пород - минерала баделита или из циркониевой руды, содержащей 80-99% ZrO 2 и до 20% примесей, окислов различных металлов. Двуокись циркония может быть получена и искусственно путем химической переработ­ки ее природных соединений. Шихту для изготовления циркониевых огнеупоров составляют из хорошо размолотой, предварительно обожженной в брикетах циркониевой массы и сырой двуокиси цир­кония в качестве связующего материала (до 10%). Так как изде­лия из двуокиси циркония характеризуются непостоянством объема при нагревах и охлаждениях, в шихту для стабилизации вводят известь. Изделия формуются прессованием или отливаются из жид­кой массы, обжигаются при температуре 1700° С.

Циркониевые изделия характеризуются высокой огнеупорностью (около 2500° С), высокой термостойкостью (более 25 водяных теплосмен), химической стойкостью к действию как кислых, так и ос­новных шлаков. При высоких температурах (около 2000° С) дву­окись циркония может вступать во взаимодействие с азотом и угле­родом, образуя хрупкие карбиды и нитриды, и с основным шлаком. Циркониевые огнеупоры применяют при изготовлении тиглей для плавки цветных металлов.

Цирконовые огнеупоры изготавливаются из силиката цирко­ния - циркона (ZrO 2 SiO 2). Цирконовые породы содержат 56-67% ZrO 2 и 33-35% SiO 2 . Примесями обычно являются окислы метал­лов- Al 2 O 3 , TiO 2 , Fe 2 O 3 и др. Производство цирконовых огнеупо­ров подобно производству циркониевых огнеупоров. Цирконовые изделия сохраняют постоянный объем при нагреве и охлаждении, поэтому в шихту для их изготовления стабилизаторы не вводятся. Основные свойства изделий из циркона - более высокая, чем у циркониевых, температура размягчения под нагрузкой (1650° С) и высокая термическая стойкость, огнеупорность 1900-2000° С.

Карборундовые изделия

Карборунд - карбид кремния - получается прокаливанием в элект­ропечи смеси чистого кварцевого песка с нефтяным коксом или антрацитом, древесными опилками и поваренной солью. Процесс образования карборунда начинается при 1600 и заканчивается при 2000°С, протекая по реакциям:

SiO 2 + 2C = 2CO + Si (пар)
Si + C = SiC
SiO 2 + 3C = SiC + 2CO.

Сначала образуется аморфный карборунд, который при темпе­ратуре выше 1900° С переходит почти полностью в кристаллический. Древесные опилки вводятся в смесь для увеличения пористости карборунда и более полного удаления летучих. Присутствие пова­ренной соли способствует удалению примесей, которые, образуя с NaCl хлористые соединения, улетучиваются при нагреве. Чистый карборунд соответствует формуле SiC (70,4% Si и 29,6% C). Тех­нический карборунд содержит в виде примесей карбид железа, кол­лоидальный углерод и различные смолы. Карборунд не плавится, но при температурах выше 1900-2000° С разлагается на кремний (пар) и углерод (графит). Огнеупорность карборундовых изделий ~ 2000-2200° С.

В зависимости от исходного материала и способа производства различают два вида карборундовых изделий:

  1. изделия на глини­стой связке, ферросилиции или других минеральных связках (карбофраксовые);
  2. изделия, рекрист а ллизованные без связки (рефраксовые).

Исходными материалами для изготовления карбофраксовых из­делий служат измельченный кристаллический карборунд (60-90%) и огнеупорная глина (связующий компонент). Изделия формуют полусухим прессованием или трамбованием.

После сушки изделия обжигают при температуре 1380-1450° С.

Карбофраксовые изделия характеризуются достаточно высокой термостойкостью (не менее 20 воздушных теплосмен), высокой теп­лопроводностью, уменьшающейся с увеличением глины в шихте, высокой кажущейся пористостью, высокой механической проч­ностью. Температура начала размягчения под нагрузкой зависит от
количества глиняной связки, при содержании ее в количестве 10-20% начало размягчения наступает при 1750° С. Хорошо сопротив­ляется воздействию кислых кремнеземистых шлаков и действию кислот (кроме HF и HNO 3), но под воздействием щелочей и окис­лов тяжелых металлов карборунд быстро разлагается. Малоустой­чив в окислительной атмосфере, окисляясь по реакции 2SiC + 3O 2 = 2SiO 2 +2CO (пленка SiO 2 , образующаяся на изделии, несколько защищает его от дальнейшего окисления).

Карборундовые изделия на ферросилициевой связке характери­зуются меньшей пористостью (около 10 %), а отсюда меньшей га­зопроницаемостью и большей шлакоустойчивостью.

Рефраксовые изделия изготавливаются из тонкоизмельченного кристаллического карборунда на органической связке и обжигаются при температуре 2300° С. При обжиге происходит перекристаллиза­ция карборунда, в результате чего изделие приобретает прочность. Для рефраксовых изделий характерна более высокая температура
начала деформации под нагрузкой, высокая термическая стойкость (до 150 водяных теплосмен), значительно более высокая теплопро­водность, однако они легко окисляются, так как обладают значи­тельной пористостью.

Из карборунда изготавливаются плиты для муфелей, футеровка электропечей и печей электроннолучевой плавки, формы для отлив­ки алюминия, ректификационные колонны для получения цинка, нагреватели для электрических печей сопротивления, рекуператоры.

Углеродистые огнеупоры

Углеродистые огнеупоры содержат не менее 30% С и характеризу­ются высокими огнеупорностью, термостойкостью, шлакоустойчивостью, теплопроводностью и электропроводностью. Углеродистые огнеупоры можно разделить на две группы - коксовые огнеупоры, состоящие в основном из углеродистых материалов (кокса и др.), и графитовые огнеупоры, содержащие графит и глинистые мате­риалы.

Для коксовых огнеупоров исходным сырьем служит литейный кекс или нефтяной кокс, не содержащий золы для увеличения элек­тропроводности. В качестве связки применяются антраценовое масло и пеки с добавкой битума. После формовки и сушки изделия обжи­гают в восстановительной атмосфере при температуре 1000-1320° С. Коксовые огнеупоры характеризуются высокой огнеупорностью (свыше 3000° С), высокой термической стойкостью и постоянством объема. Деформация под нагрузкой при высоких температурах практически отсутствует. Коксовые огнеупоры не смачиваются шла­ками, поэтому не разрушаются ими, имеют высокие теплопровод­ность и электропроводность. Основной недостаток углеродистых изделий - быстрая окисляемость, поэтому их можно применять только в восстановительной атмосфере или под слоем других огне­упоров.

Изделия цилиндрической формы используются в качестве элек­тродов в дуговых печах.

Графит встречается в естественном состоянии и получается искусственно нагревом антрацита или нефтяного кокса в электропе­чах при температуре 2300° С. Из графитовых огнеупоров наиболь­шее применение в цветной металлургии нашли графитно-шамотные огнеупоры, идущие на изготовление тиглей для плавки металлов и
сплавов. Шихту для их производства составляют из 30-35% че­шуйчатого графита, 30-45% шамота и 30-40% огнеупорной гли­ны. Тигли формуют в гипсовых или металлических формах, осто­рожно сушат и обжигают в восстановительной атмосфере в специальных капсулах с угольной засыпкой при температуре 700-900° С. Перед употреблением тигли должны прокаливаться при температуре 1200°С для удаления гигроскопической влаги. Огнеупорность графитовых изделий около 2000° С. Они не деформиру­ются под нагрузкой до температуры 2000° С, характеризуются по­стоянством объема (наблюдается лишь незначительное расширение при нагреве). Графитовые изделия являются нейтральными и обла­дают высокой шлакоустойчивостью, но при высокой температуре углерод взаимодействует как с кислыми, так и с основными шла­ками, восстанавливает окислы и окисляется сам. Поэтому тигли разъедаются шлаком главным образом на верхнем уровне. Харак­терное свойство графитовых тиглей - высокие теплопроводность и электропроводность, что определяет их применение в индукционных тигельных печах.

Используемые в дуговых электропечах графитовые электроды изготавливают графитизацией угольных электродов. Для этого че­рез электроды, засыпанные коксом, в печи пропускают ток, нагре­вая их до 2000° С. При этой температуре происходит графитизация углеродистых изделий.

Хромитовые, хромомагнезитовые и магнезитохромитовые огнеупоры

Хромит , или хромистый железняк , в чистом виде отвечает химичес­кому соединению Cr 2 O 3 FeO при содержании 67,9% Cr 2 O 3 и 32,1% FeO. Кроме этого, в нем всегда содержится некоторое количество примесей, главным образом MgO, Al 2 O 3 , SiO 2 и др. Являясь ценней­шей рудой для получения хрома, хромистый железняк используется и как огнеупорный материал. Схема производства хромитовых изде­лий принципиально такая же, как и магнезитовых. При обжиге хромитовых изделий в результате реакций между хромитом и дру­гими огнеупорными окислами образуется форстерит, высокоогне­упорные шпинели и другие соединения, что повышает огнеупорные свойства изделий. Основные свойства хромитовых изделий следую­щие: сравнительно высокая огнеупорность (~ 1850° С), но низкая температура начала деформации (~ 1470°С), термостойкость, не превышающая 20 воздушных теплосмен, хорошая сопротивляемость действию как кислых, так и основных шлаков, но разрушаются с об­разованием феррохрома в восстановительной атмосфере.

Хромомагнезитовые огнеупоры изготавливаются из хромита и металлургического магнезита, при содержании в шихте 50-60% хромита и 40-50 % металлургического порошка.

Магнезитохромитовые огнеупоры имеют в составе шихты 25-30% хромита и 65-70% магнезита. Увеличение содержания магне­зита повышает температуру начала деформации и термостойкость изделий. Схема изготовления хромомагьезитовых и магнезитохро­митовых изделий аналогична схеме изготовления магнезитовых из­делий.

Основные свойства хромомагнезитовых изделий - высокая ог­неупорность (~ 1950° С), сравнительно невысокая температура на­чала деформации (1450-1530°С), низкая термостойкость, сравни­тельно большая пористость, высокая стойкость против действия основных и кислых шлаков. Свойства магнезитохромитовых огне­упоров определяются гранулометрическим составом шихты, давле­нием при прессовании изделий и температурой обжига.

Свойства изделий из шихты, состоящей из мелких фракций, из­готовленных прессованием при давлении 80-130 МПа и обожжен­ных при температуре 1500-1600° С, такие же, как у хромомагнези­товых, при несколько большей температуре начала деформации и значительно более высокой термостойкости. Магнезитохромитовые
высокоплотные изделия, для которых шихта составляется из тонко размолотого магнезитового спека и крупных фракций хромита, прессуются при давлении не менее 130 МПа и обжигаются при температуре 1700-1750° С. Основные свойства таких изделий - высокие огнеупорность (~ 2000° С) и термостойкость и большая плотность (малая пористость), что увеличивает срок службы этих изделий в 1,5 раза.

Хромомагнезитовые и магнезитохромитовые изделия использу­ются для кладки стен и сводов высокотемпературных печей - ду­говых, нагревательных и плавильных.

Форстеритовые и тальковые огнеупоры

Форстеритовыми огнеупорами называются материалы, основным компонентом которых является химическое соединение - форстерит 2MgO SiO 2 . Сырьем для изготовления форстеритовых огнеупоров служат магнезиально-силикатные породы - оливиниты, сливиниты, серпентиниты и др. При изготовлении огнеупоров в шихту добавляют MgO для перевода легкоплавких силикатов магния в форсте­рит, а окислов железа в феррит магния. Избыток MgO в шихте повышает шлакоустойчивость изделий и ускоряет образование черепка. Шихту составляют из тонких фракций компонентов (<0,5 мм). В качестве связки добавляют сульфатно-спиртовую барду или патоку. Процесс изготовления такой же, как и при изго­товлении магнезиальных огнеупоров. Форстеритовые изделия обла­дают высокой огнеупорностью (1830-1880° С) и температурой начала деформации под нагрузкой (1580-1620° С). Термическая стойкость невысока (14 воздушных теплосмен) и соответствует тер­мической стойкости магнезитовых изделий, но коэффициент тепло­проводности их значительно ниже. По химической стойкости они являются слабоосновными. В изделиях возможно структурное рас­трескивание при поглощении окислов железа. Форстеритовые изде­лия, обладающие сравнительно высокими рабочими характеристика­ми, могут во многих случаях заменить магнезитовые.

Главная составляющая талька - силикат магнезии (3MgO×4SiO 2 H 2 O). Природный тальк имеет кристаллическое строение и светло-серый цвет, легко поддается механической обработке. Ог­неупорные изделия выпиливаются из талькового камня и обжига­ются при температуре 1000-1300°С, причем при нагреве до 900° С тальк разлагается:

3MgO 4SiO 2 H 2 O = 3MgSiO 3 + SiO 2 + H2O .

Кремнезем при этом выделяется главным образом в виде кристобалита. Образование кристобалита, имеющего малую плотность, препятствует усадке при обжиге. Поэтому объем тальковых изде­лий при нагреве почти не изменяется. Тальковые изделия хорошо противостоят действию железистых шлаков и окиси железа, имеют высокую термостойкость, низкую температуру начала деформаций (1350-1400°С), причем выше этой температуры деформация проис­ходит быстро и резко.

В цветной металлургии тальковые изделия применяются для футеровки медеплавильных отражательных печей до шлакового от­верстия.

Доломитовые огнеупоры

Доломитовые огнеупоры изготавливаются из минерала доломита, представляющего собой в чистом виде двойную углекислую соль магния и кальция (MgCO 3 СаСO 3). Природный доломит содержит еще SiO 2 , Al 2 O 3 , Fe 2 O 3 и некоторые другие примеси. В металлургии применяются доломиты, содержащие менее 4% примесей. Доломито­вые огнеупоры используются как в виде обожженного металлурги­ческого порошка, так и в виде штучных изделий. В результате об­жига доломитового сырья при температуре 850° С получают каусти­ческий доломит.

Особенностью доломитовых изделий является невозможность обжига «намертво», так как лишь MgO, образующая при обжиге периклаз, практически теряет способность гидратации. Свободная же окись кальция CaO после обжига может гидратироваться. По­этому обожженный доломит можно хранить только в закрытом помещении и не больше 2-2,5 месяцев. Обжиг доломита «намерт­во» и его спекание с потерей способности к гидратации достижимы только за счет флюсующих примесей, связывающих активную окись кальция. Наилучшие результаты получаются при введении в шихту кремнезема, который с CaO образует трехкальциевый силикат 3CaO SiO 2 . Для стабилизации 3CaO SiO 2 в него добавляют соеди­нения P 2 O 3 и B 2 O 3 . Из смеси прессуют брикеты, которые обжигают до спекания. После обжига получают клинкер, который состоит из периклаза, трехкальциевого силиката, кристаллической окиси каль­ция, феррита кальция (2Fe 2 O 3 CaO) и стекла. Из измельченного клинкера формуют изделия под давлением 50-60 МПа, которые после сушки обжигают при температуре около 1550° С. Обожжен­ные изделия водоустойчивы и допускают длительное хранение.

Известно также производство смолодоломитовых изделий, ко­торые могут применяться как обожженными, так и безобжиговыми. Для изготовления таких изделий используется обожженный доло­мит, измельченный до размеров зерен менее 8 мм. Связкой служит обезвоженная смола, состоящая из 60-70% пека и 40-30% антра­ценового масла. Массы смешивают при температуре 50-100° С. Приготовленную массу прессуют и обжигают при температуре 1000-1100° С в восстановительной среде. Так как в этих изделиях MgO и СаО остаются в основном в свободном состоянии и способ­ны гидратироваться, смолодоломитовые изделия являются водоне­устойчивыми и при длительном хранении могут разрушаться. То же относится и к безобжиговым смолодоломитовым изделиям.

Доломитовые водоустойчивые изделия имеют достаточно высо­кую огнеупорность (1780-1800° С), но невысокую температуру на­чала деформации (1540-1550°С), устойчивы к воздействию основ­ных шлаков, обладают большой прочностью при высоких темпера­турах. Коэффициент теплопроводности их почти в три раза меньше коэффициента теплопроводности магнезитовых изделий. Смолодоло­митовые изделия характеризуются хорошей устойчивостью к воз­действию основных шлаков, высокой температурой начала дефор­мации и достаточно высокой термостойкостью.

Доломитовые огнеупоры, так же как и магнезитовые, использу­ются в виде металлургического порошка для наварки подин и из­делий при сооружении печей.

Магнезитовые огнеупоры

Магнезитовыми огнеупорами называются огнеупоры, которые содер­жат 90% и более MgO. Сырьем для производства магнезитовых огнеупоров служит минерал магнезит MgCO 3 или гидрат окиси маг­ния Mg(ОН) 2 , получаемый из морской воды. Магнезит в природе встречается в аморфном виде и в виде кристаллического магнезито­вого шпага. Аморфный магнезит представляет собой почти чистый карбонат магния, кристаллический содержит примеси в виде CaCO 3 , FeCO 3 , Al 2 O 3 , SiO 2 и др. Содержание FeCO 3 в магнезите доходит до 8 %, причем железо при обжиге выполняет роль минерализатора.

Месторождения кристаллического магнезита находятся в СССР на Южном Урале вблизи станции Сатка. В некоторых странах, не имеющих залежей магнезита, организовано извлечение солей маг­ния из морской воды и получение гидрата окиси магния осажде­нием по реакциям:

MgCl 2 + Ca(ОН) 2 = Mg(OH) 2 + CaCl 2 ;
MgSO 4 + Ca(ОН) 2 = Mg(OH) 2 + CaSO 4 .

Магнезит после добычи обжигают при температуре 800-900° С для полного удаления CO 2 и возможно более полного спекания:

MgCO 3 = MgO + CO 2 - 117780 кДж.

Получаемая при этом обожженная MgO, называемая каустиче­ским магнезитом , способна гидратироваться и вновь поглощать CO 2 . Поэтому как сырье для изготовления огнеупоров каустический маг­незит не используется, но применяется в качестве вяжущего веще­ства, так как обладает хорошими цементирующими свойствами.
Для получения устойчивого по отношению к воде и С 0 2 материала магнезит нужно обжигать до полного спекания («намертво») при температуре не ниже 1600° С. При этом происходит кристаллизация MgO в форме периклаза - модификации магнезита, значительно бо­лее устойчивой к воде и CO 2 .

Спекшийся магнезит служит сырьем для производства метал­лургического порошка и плавленого магнезита. В первом случае спек магнезита измельчают до размеров зерен от 5 мм до тонкой пыли и просеивают с разделением на фракции. В таком виде он но­сит название металлургического порошка.

Для получения плавленого магнезита его спек расплавляют в дуговых электропечах. Из расплава при остывании образуется крупнокристаллический магнезит без примесей. В плавленом магне­зите содержится 95% и выше MgO. Из расплавов изготавливают литые брусья и кирпичи, обладающие большой плотностью и шлакоустойчивостью. Для изготовления изделий формованием или на­бивкой плавленый магнезит измельчают и просеивают с классификацией на фракции.

При изготовлении магнезитовых изделий из металлургического порошка или измельченного плавленого магнезита составляется шихта определенного гранулометрического состава. Так как обож­женный магнезит не обладает пластичностью, в шихту добавляют связующее вещество, в качестве которого применяют сульфатно­спиртовую барду, тонко размолотую глину (не более 2 %) или кау­стический магнезит. Массу увлажняют до 3-5% содержания влаги, тщательно перемешивают и закладывают в специальные хранилища на 4-5 дней для вылеживания. При этом происходит некоторая гидратация пылевидных частиц, что придает массе большую пла­стичность.

Формуют изделия из магнезита на гидравлических прессах под давлением не менее 90 МПа, причем чем выше давление прессова­ния, тем более плотными и термостойкими получаются изделия. После сушки, в процессе которой происходит увеличение механиче­ской прочности вследствие перехода коллоидальной гидроокиси маг­ния в кристаллическую, изделия обжигают при температуре 1600° С в течение 6 -7 сут.

Наряду с обожженными магнезитовыми изделиями находят применение и безобжиговые. При изготовлении их к металлургичес­кому порошку с размером зерен до 2-3 мм добавляют хромистый железняк и связующее вещество - сульфатно-спиртовую барду, па­току и др. Безобжиговые изделия прессуют под давлением до 100 МПа. После сушки при температуре 200-300° С изделия при­обретают достаточную механическую прочность без последующего обжига.

Магнезитовые изделия обладают очень высокой огнеупорностью (выше 2000° С), стойки к действию основных шлаков, но при высо­ких температурах разрушаются окисью железа, углеродом и карби­дами тяжелых металлов, мало устойчивы к парам воды. Магнезито­вые изделия имеют высокую теплопроводность, но с повышением
температуры она понижается. Температура начала деформации сравнительно низка (1500-1600° С), однако с повышением темпера­туры обжига и уменьшением количества примесей она может быть повышена.

Большим недостатком магнезитовых изделий является их ма­лая термическая стойкость - изделия выдерживают всего 4-9 воз­душных теплосмен, поэтому печи с магнезитовой футеровкой следу­ет нагревать и охлаждать очень медленно. Низкая термостойкость магнезитовых изделий обусловливается разницей в коэффициентах линейного расширения периклаза и монтичеллитовой связки. Заме­на монтичеллитовой связки на глиноземистую позволяет получить термостойкие магнезитовые изделия, так как коэффициенты линей­ного расширения периклаза и глиноземистой шпинели (MgO Al 2 O 3) близки. Эти изделия имеют более низкий коэффициент линейного
расширения и термостойкость, в 20 раз превышающую термостой­кость обычных изделий. Для получения плотных и высокоплотных магнезитозых изделий в шихту дополнительно вводят 3% TiO 2 , что повышает плотность черпака. Кажущаяся пористость этих изделий 10-15% .

Изделия с высокой температурой начала деформации могут быть получены при замене монтичеллитовой связки на форстеритовую (2MgO SiO 2). В изделиях из шихты, в которую на 80-85% металлургического порошка вводится 10-15% кварцевого песка или других кремнистых материалов и 5% каустического магнезита, после обжига содержится 8-10 % кремнезема, что повышает темпе­ратуру начала размягчения до 1600-1630° С, но термостойкость их низка.

Изделия из плавленого магнезита отличаются высокой темпера­турой начала деформации (1660°С), малой пористостью и значи­тельной термостойкостью, но стоимость их высока и в связи с этим применение ограничено.

Основное применение магнезитовых огнеупоров в цветной ме­таллургии - кладка стен и подин плавильных печей миксеров. Ме­таллургический порошок используется для наварки подин.

Высокоглиноземистые огнеупоры

Высокоглиноземистыми называются огнеупоры, содержащие более 45% Al 2 O 3 . Для их изготовления используются минералы силлиманитной группы (кианит, андалузит, силлиманит, содержащие алюмосиликаты типа Al 2 O 3 SiO 2), гидраты глинозема (гидраргиллит Al 2 O 3 3H 2 O, боксит Al 2 O 3 nH 2 O, диаспор Al 2 O 3 H 2 O) и искусственное сырье - технический глинозем и электрокорунд. Технический глино­зем, являющийся продуктом химической обработки бокситов с по­следующим прокаливанием при температуре 1000-1200° С, содер­жит более 90% Al 2 O 3 . Электрокорунд получают плавкой в электро­печах материалов, содержащих Al 2 O 3 , с последующей очисткой от
примесей.

Основные кристаллические фазы высокоглиноземистых огнеупо­ров- муллит и корунд. При содержании в сырье менее 72% Al 2 O 3 единственной устойчивой твердой фазой является муллит (3Al 2 O 3 ×2SiO 2). Весь избыточный кремнезем и примеси образуют стекло­видное вещество, переходящее при высоких температурах в жид­кость. При повышении содержания Al 2 O 3 появляется другая устой­чивая твердая фаза - корунд. Одновременно происходит увеличение содержания твердой фазы (см. рис. 88) и уменьшение содержания жидкой, что обусловливает повышение огнеупорности изделий.

Существуют два способа изготовления высокоглиноземистых изделий: формование с последующим обжигом (спекаемые изделия) и литье из расплавов (литые изделия).

При формовке спекаемых изделий используют высокоглинозе­мистый шамот, обожженный при 1500-1600° С. В качестве связую­щего материала применяют самые чистые огнеупорные глины и као­лины или временно связывающие органические вещества (например, парафин), выгорающие при обжиге. Изделия на органической связ­ке обладают более высокой температурой размягчения. После фор­мовки и сушки изделия обжигают при температуре 1600-1650° С

Плотность спекаемых изделий значительно повышается, а тем­пература спекания понижается до 1500° С при введении в формо­вочную массу 2-3% TiO 2 .

Литые изделия делаются из расплавов, получаемых плавлением сырья в дуговых печах. Шихту для изготовления литых муллитовых изделий составляют из минерала силлиманитной группы, кокса и стального лома. При расплавлении шихты происходит образова­ние муллита по реакции 3(Al 2 O 3 SiO 2) + Fe + 2C = FeSi + 3Al 2 O 3 ×2SiO 2 + 2CO.

Разлитый по специальным формам расплавленный муллит очень медленно охлаждают (в течение 4-10 сут), что снимает внутрен­ние напряжения в изделиях, затем шлифуют до нужных размеров.

Высокоглиноземистые изделия обладают высокой огнеупор­ностью (1770-1920° С), хорошей шлакоустойчивостью, большой механической прочностью, большой плотностью, высокой теплопро­водностью и термостойкостью. Корундовые изделия имеют высокую температуру начала деформации.

Высокоглиноземистые литые изделия имеют очень высокую ме­ханическую прочность и шлакоустойчивость при любом составе шлаков, однако подвержены растрескиванию при высоких темпе­ратурах.

Шамот и шамотные изделия

Шамот - алюмосиликатный огнеупорный материал - представляет собой обожженную до постоянного объема, потерявшую пластич­ность массу из огнеупорной глины или каолина. Глиной называется продукт разрушения некоторых горных пород, главным образом гранита, гнейса, порфира. Получающийся при этом водный алюмосиликат Al 2 O 3 ·2SiO 2 ·2H 2 O, называемый каолинитом, является главной составной частью огнеупорных глин и каолинов. Каолины содержат меньше примесей, чем огнеупорные глины, поэтому используются для изготовления более качественных изделий.

Важнейшие свойства глин - пластичность, связующая способ­ность и спекаемость.

Пластичностью называется способность увлажненной глины в тестообразном состоянии принимать заданную форму, не изменяю­щуюся после прекращения давления и удаления воды. В зависимости от пластичности различают глины пластичные (жирные) и тощие.

Связующая способность - способность глины с добавлением не­которого количества непластичного материала в высушенном со­стоянии давать прочный материал. Пластичные глины обладают большей связующей способностью, чем тощие.

Вода в глинах содержится в виде гигроскопической, воды затворения и химически связанной. Гигроскопической называется вода, которую глина поглощает из окружающей среды. Воздушно-сухая глина всегда содержит гигроскопическую воду. Вода затворения - это добавляемое количество воды, которое соответствует оптимальной пластичности глины. Химически связанная вода входит главным образом в состав каолинитов.

При сушке вследствие частичной потери воды затворения изде­лия из огнеупорной глины уменьшаются в объеме на 12-15% при тощих глинах и на 25-30% при жирных. При нагреве глины до 150° С удаляются остатки воды затворения и гигроскопическая вода. При дальнейшем нагреве в интервале температур 450-650° С выде­ляется химически связанная вода, и пластичность полностью теряет­ся. Нагревание свыше 930° С сопровождается образованием муллита, при этом имеет место огневая усадка, которая необратима.

Спекаемость - способность глин при определенных температу­рах обжига образовывать плотный прочный черепок, называемый шамотом. Шамот не дает усадки и имеет высокие механическую проч­ность, шлакоустойчивость, химическую стойкость.

Огнеупорность глин зависит главным образом от их состава и лежит в пределах 1580-1770° С. На рис. 88 дана диаграмма состоя­ния системы SiO 2 - Al 2 O 3 , которая показывает, что увеличение содержания глинозема свыше эвтектического состава повышает огнеупор­ность. Все примеси понижают огнеупорность глины. Особенно силь­ное понижение огнеупорности вызывают щелочи K 2 O и Na 2 O , поэтому содержание их в глинах выше 1 % нежелательно.

В зависимости от соотношения Al 2 O 3 и SiO 2 в составе глин по­лучают, полукислые, шамотные или высокоглиноземистые огнеупоры.

Шамотные изделия , наиболее широко используемые в строи­тельстве металлургических печей, делаются из смеси порошка не­обожженной пластичной огнеупорной глины и молотого шамота как отощающего компонента. Присутствие в шихте шамота уменьшает усадку и растрескивание изделия при нагреве. Производство шамот­ных изделий включает в себя получение шамота, подготовку пла­стичной глины и изготовление из их смеси изделий.

Процесс получения шамота состоит из обжига глины на шамот при температуре 1300-1400° С. После обжига шамот подвергают сначала грубому дроблению, потом тонкому помолу. Размолотый шамот просеивают с разделением на фракции по величине зерен.

Подготовка огнеупорной глины состоит из очистки ее от механи­ческих примесей и сушки в сушильных барабанах. Подсушенную глину размалывают в шаровых мельницах.

Существуют два способа изготовления изделий - пластичное формование и полусухое прессование. При пластичном формовании изделий шамот определенного гранулометрического состава смеши­вают с глиной в сухом смесителе, причем для обычных шамотных изделий смесь составляют из 50-60 % шамота и 50-40 % огнеупорной глины. После сухого смешивания массу направляют во влажный смеситель, увлажняют до 16-24 % (сухой массы), а при жирных глинах и больше. Изделия формуют на прессах под давлением 1500-2000 кПа.

При полусухом прессовании изделий влажность прессуемой мас­сы значительно меньше 6-9 %. Соотношение шамота и глины бе­рется такое же, как и при пластичной формовке, но часть пластич­ной глины предварительно смешивают с водой для образования шликера, которым смачивают зерна шамота. Шамот, увлажненный шликером, и оставшаяся глина поступают на смешивание (при до­бавлении к шамоту шликера получается хорошее обволакивание зе­рен шамота глиной). Со шликером в массу вводят всю необходимую воду затворения. Прессуют полусухую массу на механических прес­сах под давлением 10-60 МПа. Способ полусухого прессования по­лучил большое распространение, так как изделия при этом имеют меньшую усадку при сушке и обжиге (около 2-3 %) и получаются более плотными, механически прочными и термостойкими. Однако способом полусухого прессования трудно изготовить изделия слож­ной формы и массивные. Преимуществом же пластичной формовки является сравнительная дешевизна, особенно при изготовлении из­делий сложной формы.

Отформованные или отпрессованные изделия сушат. В процессе сушки удаляется большая часть воды затворения, и при этом объем изделия уменьшается (происходит усушка). Для предотвращения ко­робления и растрескивания изделия сушку проводят с постепенным и равномерным нагревом. Обычно сушку осуществляют в специаль­ных устройствах при температуре 110-120° С.

После сушки шамотный сырец с влажностью 3-5 % поступает на обжиг, который необходим для превращения всей глины, входя­щей в состав сырца, в шамот. В первый период обжига, при мед­ленном повышении температуры до 200°С (со скоростью 5°С/мин), удаляются остаток воды затворения и гигроскопическая влага. Во втором периоде при повышении температуры с 200 до 900°С выде­ляется химически связанная вода. Далее температуру повышают до 1350°С со скоростью 10-12°С в минуту. В этот период происходит образование муллита и сложные процессы образования силикатов железа, щелочных металлов и других соединений. После обжига тем­пературу медленно понижают до 40-50°С.

Общими свойствами шамотных изделий являются невысокая ог­неупорность (1610-1730°С в зависимости от класса), сравнительно низкая температура начала деформации под нагрузкой (1200-1400° С), повышенная кажущаяся пористость (13-28 %), относи­тельно высокая термостойкость, невысокая теплопроводность, хоро­шая сопротивляемость воздействию кислых (при повышенном содер­жании SiO 2) и основных (при повышенном содержании Al 2 O 3) шлаков, высокая износостойкость и низкая стоимость. Основные характеристики шамотных изделий даны в приложении IV.

К разновидностям шамотных изделий относятся многошамот­ные, бесшамотные, каолиновые и полукислые изделия. Многошамот­ные изделия изготавливаются из шихты с повышенным содержанием шамота 80-95% и 20-5% связующей огнеупорной глины. Грануло­метрический состав шамота подбирается так, чтобы получить наи­более плотную укладку зерен. Глина добавляется в виде шликера. Для увеличения связующей способности глины в шихту вводят клеящие добавки (сульфитно-спиртовая барда около 0,4%). Давление при формовке 40-50 МПа. Сушка почти не требуется. Обжиг производится по программе, обычной для шамота. Температура об­жига 1400° С. Изделия из многошамотных огнеупоров отличаются высокой механической прочностью на сжатие, малой пористостью, высокой термической стойкостью (до 100 и более теплосмен), малой усадкой и в связи с этим большой точностью размеров и формы.

Бесшамотные изделия , в которых шамот заменен сухарными сульфатными глинами, обладают малой пористостью, высокой ме­ханической прочностью и термической стойкостью. Бесшамотные из­делия получают методом полусухого прессования.

Каолиновые изделия изготовляются из шихты, состоящей из 70% предварительно обожженного при температуре 1400°С каоли­на, 15% сырого каолина и 15% пластичной огнеупорной глины. Из­готавливаются они методом полусухого прессования при давлении 40-60 МПа. Температура обжига 1450-1500° С. По сравнению c шамотными каолиновые изделия обладают более высокой огнеупор­ностью, более высокой температурой деформации под нагрузкой, а также большей термической стойкостью и шлакоустойчивостью.

Полукислые изделия по своему составу являются промежуточ­ными между динасовыми и шамотными. Они изготавливаются из тощих или искусственно отощенных глин или каолинов и содержат 15-30% Al 2 O 3 и не менее 65% SiO 2 . Так как глина при обжиге дает усадку, а кремнезем увеличивается в объеме, то при определен­ном количественном соотношении глины и кремнезема можно полу­чить изделия, практически не изменяющие размеров при длительном нагреве. Полукислые изделия обладают огнеупорностью, близкой к огнеупорности шамотных, пониженной термостойкостью, но повы­шенной температурой начала размягчения под нагрузкой и малой усадкой. Каолин повышает термостойкость полукислых огнеупоров. Полукислые изделия имеют сравнительно малую пористость.

Динасовые огнеупоры

Динасом называется огнеупорный материал, изготовленный из квар­цитовых или кварцевых пород и содержащий не менее 93 % SiO 2 .

Кремнезем может существовать в одной аморфной и семи кри­сталлических модификациях, которые, имея один и тот же химиче­ский состав, различаются между собой некоторыми свойствами (фор­мой кристаллов, плотностью, коэффициентом светопреломления и др.). Кристаллические модификации кремнезема называются как кристаллы, встречающиеся в природе: кварц, тридимит и кристобалит с подразделением каждой из главных форм на α-, β- и γ-фазу.

В природе наиболее распространен β-кварц. Он встречается са­мостоятельно под названием «кварц» и в виде составной части мно­гих горных пород: гранитов, гнейсов, песчаников и др. При нагреве кремнезем переходит из одной модификации в другую. Превращения SiO 2 могут идти двумя путями, существенно отличающимися друг от друга. К первому относятся превращения между различными мо­дификациями внутри главных форм кремнезема: кварца, тридимита и кристобалита (рис. 87). Превращения эти обратимы и протекают быстро.

Ко второй группе относятся превращения между главными фор­мами кремнезема - такие превращения совершаются весьма медлен­но, причем превращения кварца в тридимит или кристобалит практи­чески необратимы.

Скорость протекания медленно идущих превращений растет с повышением температуры, увеличением измельченности, а также в присутствии минерализаторов (плавней). При производстве динаса ими служат известь и вещества, содержащие закись железа. В про­цессе обжига динаса CaO и FeO образуют с кермнеземом легкоплав­кие силикаты, которые при высоких температурах растворяют крем­незем. Из пересыщенного раствора кремнезем выкристаллизовыва­ется в виде той модификации, которая менее растворима при тем­пературе кристаллизации.

Так как модификации кермнезема имеют разные плотности, при превращениях изменяются объемы (см. рис. 87).

О степени перехода кварца в тридимит и кристобалит можно судить по плотности обожженных изделий. Чем меньше плотность, тем полнее переход. При обжиге желательно кварц максимально перевести в тридимит, который имеет меньшее изменение объема при охлаждении. Если выложить печь из слабообожженного кирпича, в котором кварц не перешел в кристобалит или тридимит, то эти превращения произойдут в кладке при разогреве печи. При этом объем кирпичей значительно увеличится, и кладка может разрушить­ся. Динасовые изделия, в которых при обжиге большая часть кварца перешла в тридимит или кристобалит, называются тридимитизированными или тридимито-кристобалитовыми.

Сырьем для производства динаса служат кварциты, содержащие не менее 95 % SiO 2 . Кварциты состоят из мелких и микроскопичес­ких зерен кварца, сцементированного кремнеземом с небольшим ко­личеством примесей других соединений. Огнеупорность кварцитов зависит от их химико-минералогического состава, но не должна быть ниже 1750° С.

После дробления и измельчения на бегунах кварциты просеива­ют на несколько фракций. Гранулометрический состав шихты зави­сит от характера сырья, способов его обработки и назначения изде­лий. Динасовая шихта составляется из зерен кварцита размером от тончайшей муки до 5-6 мм. Для связывания кварцитовых зерен в сырце, а также для ускорения превращения кварца обычно добавля­ется 1,5-3 % извести в виде известкового молока. Смесь кварцитов с известковым молоком проминают катками бегунов. После фор­мовки на прессах и сушки сырец обжигают в туннельных печах.

Обжиг динаса - самая ответственная операция. Подъем темпе­ратуры должен быть равномерным и медленным, особенно в точках перехода кварца из одной модификации в другую. При быстром подъеме температуры кварцевые зерна растрескиваются, кирпич сильно увеличивается в объеме и разрыхляется. Кроме того, чем быстрее повышается температура, тем меньше образуется жидкой фазы. При достаточном количестве жидкой фазы она заполняет пространство между рекристаллизующимися зернами кварца и вос­принимает возникающие при этом напряжения. При недостаточном количестве жидкой фазы происходит так называемое сухое превраще­ние α-кварца в α-кристобалит, при этом сырец вследствие сильного увеличения объема разбухает и растрескивается.

Максимальная температура обжига не должна превышать 1460° С, так как при более высокой температуре в α-кристобалит превращается не только α-кварц, но и α-тридимит. Большое коли­чество кристобалита в динасе нежелательно, так как при этом будет сильно изменяться объем при нагревах и охлаждениях. При охлаж­дении обожженного динаса необходимо также соблюдать осторож­ность, особенно при переходе кремнезема из одной модификации в другую. Условия обжига динаса нужно соблюдать и при разогреве печей.

Для динасовых изделий характерны сравнительно невысокая ог­неупорность (1710-1720° С), но высокая температура начала дефор­мации под нагрузкой (1620-1660° С). Основные характеристики ди­наса даны в приложении IV.

Тридимито-кристобалитовый динас сохраняет механическую прочность и не меняет формы почти до температуры плавления. По­этому динасовый кирпич находит широкое применение в металлургии особенно там, где требуется высокая механическая прочность при высоких температурах. Термостойкость динаса очень мала, не более двух теплосмен, однако при медленном разогреве и охлаждении ди­нас способен хорошо переносить многократные теплосмены и при этом не терять механической прочности.

По химической стойкости динас является типично кислым огне­упором. Изменение размеров при нагреве хорошо обожженного, полностью рекристаллизованного динаса незначительно. Но так как при изготовлении кирпичей полного превращения кварца не дости­гают, то некоторое увеличение в объеме при повторных нагревах имеет место. Так, при нагреве до 1450° С изменение линейных разме­ров достигает 1,6 - 2,1 %, а последующее расширение может дости­гать 0,7 %. Это следует учитывать при кладке печи, предусматри­вая температурные швы.

Динасовые огнеупоры широко применяются для кладки сводов плавильных печей в связи с отсутствием у них дополнительной усад­ки при длительных сроках службы в условиях высоких температур.

Высокоплотный динас с содержанием не менее 98 % SiO 2 и ка­жущейся пористостью около 10 % изготавливается из высококрем­неземистых чистых кварцитов, причем сырец до обжига подвергает­ся сильному прессованию. Высокоплотный динас обладает повышен­ной огнеупорностью (до 1740° С) и термостойкостью. Имея меньшую пористость, он более устойчив к воздействию шлаков. Применяется для футеровки высокотемпературных плавильных печей. Электроди­нас по характеристикам близок к высокоплотному динасу. Исполь­зуется для футеровки сводов электроплавильных печей.

Раствор для огнеупорного кирпича необходимо замешивать по определенным правилам, от этого зависит качество кирпичной кладки. Возведение русских печей, каминов, очагов для барбекю и прочего остается одним из самых востребованных видов строительства. Его невозможно себе представить без использования огнеупорного (шамотного) кирпича.

При таком обилии объектов альтернативы использованию шамотного кирпича по-прежнему нет. Этот замечательный материал делают из, так называемого молотого порошка огнеупорной глины, каолина и шамотового порошка. В результате получают материал с очень интересными свойствами:

  1. Повышенная стойкость к низким температурам;
  2. Невосприимчивость к действию агрессивных щелочей и кислот;
  3. Выдерживает нагревание до 1500 градусов без саморазрушения.

Такие превосходные характеристики требуют использования соответствующего сцепляющего раствора, обладающего подобными характеристиками.
Неудивительно, что для приготовления подобного раствора тоже используют шамот.

Вещество получают из белой каолиновой глины, которая предварительно подвергается обработке высокой температурой. После этого материал обретает характеристики камня, его дробят, получая шамотную глину. Описание шамотной глины. В магазинах шамотная глина встречается в виде сухой строительной массы, которую добавляют в различные строительные кладочные и штукатурные растворы.

Технические характеристики и свойства. Покупая этот материал, следует очень внимательно смотреть на срок годности. Это важно, так как шамотная глина при длительном хранении утрачивает свои свойства. Из шамотной глины делают сухие смеси для приготовления штукатурных и кладочных растворов, и создания огнеупорных кирпичей. Шамотная глина делает раствор очень капризным. Неопытные строители часто сталкиваются с большими проблемами при выполнении кладки из огнеупорного материала:она бывает достаточно непрочной, а штукатурка сильно трескается и отваливается.

Чтобы избежать подобных проблем, каолиновой глине требуется вернуть утраченную при обжиге пластичность. Сделать это можно двумя способами: добавлением специального клея, либо обыкновенного песка.

Приготовление раствора для кладки шамотного кирпича

Укладку огнеупорного кирпича производят исключительно с использованием песчано-глинистого раствора, а в некоторых случаях и вовсе без него.
Для приготовления раствора можно использовать как готовую смесь, приобретенную в магазине, так и приготовить ее собственными силами. Так называемый шамотный мертель изготовляется в виде сухого мелкоизмельченного огнеупорного порошка. Это готовый полуфабрикат, который при добавлении воды после тщательного замешивания превращается в готовую смесь для кладки шамотного кирпича.

Для раствора подходит песок с крупностью зерен не более 2,5 мм.

Промышленным миксером, либо чем-то подобным, смесь доводят до консистенции домашней сметаны. После того, как раствор готов, ему дают настояться в течение часа, после чего его снова тщательно размешивают. Чтобы придать смеси крепость, в него можно добавить немного портландцемента. Главным критерием качества смеси является близость его огнеупорных характеристик идентичным характеристикам огнеупорного кирпича, который будут на нее укладывать.

Процедура ничем принципиально не отличается от традиционного приготовления раствора. Есть только ряд необходимых действий. Молотую глину следует замочить в воде на 3 дня, периодически ее необходимо перемешивать. После этого глину следует протереть через сито, а затем добавить просеянный песок. Идеальное соотношение частей — 1 часть глины на 6 частей песка. Перемешивать компоненты следует в сухом состоянии, а затем добавить воду.

Несмотря на кажущуюся простоту использования шамотного мертеля, качество кладки с использованием такого раствора может оказаться неприемлемым по уровню усадки.

Альтернативой мертелю может выступить смесь для кладки, приготовленная своими руками.

Вернуться к оглавлению

Огнеупорный раствор своими руками

При приготовлении раствора необходимо строго учитывать пропорции.

Для приготовления и укладки огнеупорного раствора будет необходим следующий набор материалов и инструментов:

  • молотая огнеупорная глина;
  • шамотный песок;
  • вода;
  • цемент;
  • соль;
  • клей;
  • ведро;
  • сито;
  • шпатель;
  • мастерок;
  • строительный уровень;
  • рейки;
  • гвозди;
  • шнур.

Воду следует добавлять понемногу, чтобы не пропустить стадию, когда раствор достигнет консистенции сметаны. Чтобы раствор для кладки шамотного кирпича был более прочным, в него необходимо добавить 100-150 гр соли на ведро готового раствора, горсть цемента или жидкого клея.

Вернуться к оглавлению

Процедура укладки шамотного кирпича

Началом процесса кладки должна стать тщательная разметка. Отличным подспорьем станет, так называемая сухая укладка, когда подбирают кирпичи, подгоняют их друг к другу и выставляют величину зазора между кирпичами. По окончании сухой укладки кирпичи снимают в порядке следования в пробной кладке. Не забывайте, что шов должен закрываться верхним кирпичом, что обеспечит кладке большую надежность. Особое внимание следует уделить качеству расшивки швов, чтобы избежать проблем после окончания работ.

Качество приготовления раствора напрямую влияет на толщину шва огнеупорной кладки. Соответственно швы по этому показателю разделяют на четыре группы:

  • 1 категория — толщина шва менее 1 мм;
  • 2 категория — шов равен 2 мм;
  • 3 категория — шов равен 3 мм;
  • 4 категория — шов толще 3 мм.

Категорию кладки определяют температурные условия использования кладки. Чем выше планируемая температура, тем более тонким должен быть шов, и тем тщательнее вымешан раствор. Средства проверки качества кладки огнеупорного кирпича. Первым делом контролируют категория шва. Для этого используют специальный щуп шириной 15 мм и толщиной, равной толщине шва. Подобный щуп не должен проникнуть в шов на глубину больше 20 мм.

Ни одна кладка не обходится без постукивания каждого кирпича ручкой мастерка. Это приводит в конечном итоге к неровности кладки. Дефект необходимо исправить пока раствор достаточно свежий. Для обеспечения ровной горизонтальной укладки и одинаковой ширины швов используют рейки-порядовики. К ним крепят тонкий прочный шнурок, который задает правильные параметры укладки.

Каждый следующий слой выставляется по шнуру, натянутому на гвоздях, вставленных в свежий шов. На каждом этапе процесса следует внимательно следить за равномерностью распределения раствора между кирпичами. Неравномерное распределение значительно ухудшает характеристики огнеупорной кладки. Как и в случае обычной кладки, кирпич следует обильно смачивать. В противном случае, кирпич будет активно высасывать воду из раствора, тем самым в значительной степени ухудшая его характеристики.

Лучший результат будет, если кирпичи перед укладкой подержать какое-то время в емкости с водой. Такая процедура очистит материал от пыли и насытит его водой. Кладка огнеупорного кирпича с использованием правильно приготовленного раствора — процесс не из легких, но если все сделано по правилам, ваша печь или камин будет радовать глаз красотой, а тело благодатным теплом очень много лет.

Мертель - измельченная смесь огнеупорных отощающих и связующих материалов, которые, после затворения их водой, служат огнеупорными растворами.

Мертели, растворы и защитные обмазки служат вспомогательными материалами, но имеют важное, а иногда и решающее значение в повышении износоустойчивости огнеупорной кладки в целом.

Огнеупорные растворы используются при выполнении кладки огнеупорных конструкций тепловых установок для связывания отдельных ее элементов (например, кирпичей или блоков). По своему химико-минералогическому составу мертели должны соответствовать связываемым огнеупорным материалам.

Растворы должны быть достаточно огнеупорными, хорошо заполнять выемки, сглаживать неровности на кирпичах, медленно отдавать последним влагу, создавать тонкие швы, после обжига иметь небольшую пористость, газопроницаемость, быть прочными, хорошо спекающимися с кирпичами в процессе службы. Для обеспечения долговечности огнеупорной кладки в целом объемные изменения раствора и кирпича в эксплуатации должны быть одинаковыми. Качественный раствор должен образовывать шов, незначительно отличающийся по прочности от самой кладки. При сушке кладки в процессе испарения воды из раствора происходит усадка материала шва. При чрезмерной воздушной усадке в высыхающем растворе образуются трещины, в связи с чем снижается его связь с элементами кладки. Это обстоятельство следует учитывать при проектировании составов мертелей и растворов. Усадочные компоненты (глины) вводят в них в возможно меньших количествах, но достаточных для обеспечения пластичности и хорошей спекаемости растворов.

В процессе работы кладки при высоких температурах в ней появляется дополнительная усадка (или рост). Усадка растворов несколько превышает дополнительную усадку изделий. Возникающие при этом напряжения на границе изделие - раствор могут компенсироваться пластической деформацией в растворе вследствие образования в нем жидкой фазы. При этом усадка раствора не должна превышать определенные пределы, установленные практикой.

Растворы обычно состоят из четырех компонентов: основной инертной массы (отощителя) в виде тонкозернистого порошка, пластичного компонента (связущего), различных добавок, регулирующих свойства раствора, и воды.

Иногда кладку выполняют насухо, т. е. засыпают остающиеся после притирки изделий тонкие швы мертелем - порошком того же состава, что и изделия (рис. 22). Изготовляют порошки на зя — водах огнеупорных изделий.

Вид раствора определяется типом изделий, для кладки которых он применяется. По этому признаку обычно и классифицируют растворы: шамотные, динасовые, для углеродистых блоков и т. д.

Каждая из этих групп содержит свои особые классификационные признаки. Они обычно характеризуют не раствор, а его твердую субстанцию- порошок, состоящий из инертных и вяжущих веществ - мертель.

Алюмосиликатные и динасовые растворы обычно содержат соответственно 15-20 и 5-11% связующей глины. Для повышения пластичности в них вводят от 0,08 до 0,18% кальцинированной соды, а для уменьшения количества воды, необходимой для затворения, от 0,07 до 0,15% сульфитно-спиртовой барды.

В зависимости от сырьевого и химического состава ди — насового мертеля установлены следующие его марки (ГОСТ 5338-60):

МД1-для печей с рабочими температурами более 1500°С;

МД2 - то же, менее 1500°С.«

Рис. 22. Тепловая изоляция свода печи

1- шамотный легковес; 2- динасовая крошка; 3- динас

Зерновой состав мертелей должен соответствовать следующим требованиям:

Для алюмосиликатных мертелей в зависимости от сырьевого, химического и зернового состава, а также от огнеупорности (по ГОСТ 6137-61) устанавливаются следующие марки:

BTl, ВТ2 - высокоглиноземистые мертели тонкого помола; ШТ1, 11ΙΤ2 - шамотные мертели тонкого помола; ПТ1 -полукислые мертели тонкого помола; LLIK1, ШК.2, ШКЗ - шамотные мертели крупного помола; ПЮ, ПК2 - полукислые мертели крупного помола.

Воздушнотвердеющие глинистые и безглинистые растворы содержат добавки, повышающие прочность швов до момента спекания. В этом случае в мертели вводят до 15% жидкого стекла, для связывания щелочи которого добавляют 10% боксита, гидрата глинозема или технического глинозема.

Зерновой состав алюмосиликатных мертелей приведен в табл.24.

Гранулометрический состав мертелей

В хромомагнезитовых и хромитовых растворах воздушное твердение обеспечивается за счет добавки периклазового цемента, т. е. тонкомолотого высокообожженного магнезита, затворенного водным раствором Mg SO4 или других солей. Такие растворы приготавливают обычно непосредственно перед применением.

Характеристика мертелей

Химический состав в пересчете на прокаленное вещество, %

Рабочая температура, °С

Огнеупорность, °С, не ниже

Алюмосиликатные(ГОСТ 6137-61)

Al2O3+TiO2, не менее 60 45

Шамотные, воздушно-твер — деющие (ТУ-04-49)

Al2O3+TiO2, не менее 35

Fe2O3, не более 5

Динасовые (ГОСТ 5338- 60)

Хромомагнезитовые воздушно-твердеющие

Mg O, не менее 33

Огнеупорность до затворения жидким стеклом.

Воздушно-твердеющие алюмосиликатные мертели на алюмофосфатной связке (а. ф. с.) получают, добавляя 3- 5% гидрата окиси алюминия и 10-15% соответственно ортофосфорной кислоты. Из этих растворов получаются тонкие швы большой прочности при обычных и высоких температурах. Для подготовки. исходных компонентов используют то же оборудование, что и для получения мелкозернистых составляющих порошков в соответствующем производстве огнеупорных изделий. Растворы из мертелей приготавливают в передвижных растворомешалках периодического действия, непосредственно перед кладкой. В табл. 25 приведены основные показатели некоторых мертелей.

При испытании мертелей определяют их химический и зерновой составы, консистенцию растворов, водоудерживающую способность, прочность и газопроницаемость.

Мертели применяют для кладки футеровок промышленных печей, ковшей, рекуператоров и т. д. Шамотно-глиноземистые и шамотные воздушно-твердеющие мертели применяют для кладки доменных печей и воздухонагревателей. Динасовые - для,кладки коксовых печей. Воздушно-твердеющие хромомагнезитовые мертели используют для кладки основных огнеупоров в сталеплавильных и других печах.

Если конструкция будет использоваться при высоких температурах, чтобы скрепить ее, используют раствор для шамотного кирпича. Этот раствор готовится особым образом и тоже обладает огнеупорными свойствами. Кладка огнеупорного кирпича может производиться только на растворе из песка и глины или совсем без раствора. Такой раствор можно приобрести в виде готовой смеси и развести его для работы. Называется этот материал шамотным мертелем.

Качественный шамотный кирпич обладает однородным цветом и ровными, не сколотыми краями.

Порошок этот очень мелкий и до момента приготовления должен храниться в сухих местах. Для получения раствора, обладающего специальными свойствами для кладки огнеупорного кирпича, порошок смешивают с определенным количеством воды и тщательно, при помощи дрели с насадкой или специального строительного миксера, перемешивают. Всякий раз добавляется строго определенное количество воды, но готовая смесь по консистенции должна напоминать сметану. Полная готовность раствора достигается через 1-2 часа настаивания.

После этого раствор еще раз тщательно перемешивают. Рекомендуется для повышения прочности раствора добавлять в него 1/6 часть портландцемента, рассчитывая по отношению ко всей массе. Состав такого раствора должен быть максимально приближен к составу самого шамотного кирпича, в частности, по огнестойкости и газостойкости. Хотя мертель отвечает всем этим требованиям, он очень сильно усаживается, даже будучи приготовленный по всем правилам. Поэтому вместо готового порошка рекомендуется взять все нужные ингредиенты и приготовить его самостоятельно.

Раствор для кладки: приготовление ингредиентов

Для конструкций, которые будут постоянно испытывать высокие тепловые нагрузки, не подходит обыкновенный цементный раствор. Чтобы положить печь или камин, используют смесь из песка и глины, соотношение которых различается в зависимости от жирности глины. Для того чтобы самостоятельно замесить такой раствор, понадобятся:

  • шамотный песок;
  • молотая огнеупорная глина;
  • мелкое строительное сито;
  • соль;
  • цемент;
  • вода.

Добавление цемента в такой состав необязательно, и добавляется он в небольшом количестве. Смесь должна обладать высокой пластичностью, не иметь комьев и быть однородной. Это обеспечит впоследствии прочную связь между кирпичами, такая смесь не растрескается и не даст при высыхании большую усадку.

Если в основе смеси лежит жирная глина, она может хорошо размазываться по кирпичу, и шов с ее использованием будет красив и очень тонок. Эту смесь не рекомендуется использовать для печных работ, так как в процессе высыхания очень велика ее усадка. Если же взять тощую глину, смесь не будет усаживаться, но и прочность в необходимой мере не обеспечит, так как будет крошиться и трескаться.

Вернуться к оглавлению

Качество песка и глины

Для приготовления раствора нужно брать чистый и очень мелкий песок.

Берут очень чистый и самый мелкий песок, чаще всего это горный или речной песок, который просеивают через мелкое сито, чтобы исключить включения растений и камешки. На ощупь определить, какова глина и подойдет ли она для работы, могут только опытные специалисты. Но для этого существует несколько способов, которые подходят для использования их новичками.

Глину для определения ее качества кладут в ведро и заливают водой, а затем перемешивают, чтобы смесь по консистенции напоминала жидкую сметану. Пока глина не осела на дно, в ведро опускают свежеструганную дощечку, достав ее обратно, смотрят, сколько на нее налипло глины. Если слой менее 1 мм, эта глина тощая, и ее нужно смешивать с более жирными глинами. Если слой очень толстый, требуется добавить песок. Нормальная по пластичности глина прилипнет к доске неравномерно и толщиной около 2 мм.

Самый долгий и достоверный способ определить качество глины потребует разделить ее на 5 порций, каждая объемом в 1 литр. Первая порция смешивается с водой. Во вторую добавляют 1/10 часть литровой банки с песком, в третью кладут 1/4 банки, в четвертую — 3/4, а в последнюю — полную банку песка. Смешивая все приготовленное по отдельности до тех пор, пока глина не липнет к рукам, из каждой смеси лепят маленькие шарики, раскатывая часть их в лепешки. Глина сохнет примерно 10 дней в помещении, где сухо и нет сквозняков. Пригодной для соединения кладки считается та смесь, лепешки из которой растрескались менее всего, а шарики не разбиваются, падая с метровой высоты на пол.

Если нет времени ждать 10 дней, можно устроить чуть менее точную проверку смеси на прочность. Шарики укладываются на ровную поверхность и при помощи ровной дощечки начинают слегка придавливаться как можно равномернее. Сразу рассыпавшиеся шарики сделаны из тощей глины, если трещины практически не появляются, глина жирная. Нормальной и подходящей считается та комбинация, когда шарики покрываются мелкими трещинами (при сжатии) примерно на треть от размера.

Вернуться к оглавлению

Замешивание раствора для кладки огнеупорного кирпича

К этой работе нужно подходить ответственно, так как неверное количество ингредиентов или нарушенный порядок работ может помешать приготовлению качественного раствора для кладки. Огнеупорную глину требуется замочить в воде так, чтобы вода покрыла ее полностью, и оставить в этом состоянии размокать на срок от 12 до 72 часов. Нужно периодически перемешивать замоченную глину.

Замоченную глину нужно тщательно перетереть через сито.

Затем глину, замоченную для кладки, необходимо протереть через сито, размер каждой ячейки которого не превышает 3х3 мм. Через то же сито просеивают сухой песок и добавляют его к глине. Идеальной для кладки мастерами считается пропорция 1 части глины к 2 частям песка. Глину с песком хорошо перемешивают до однородности, после этого добавляют воду.

Чтобы раствор для кладки получился правильным, воду в него требуется вливать тонкой струйкой, непрерывно размешивая при этом раствор. Прекращают лить воду тогда, когда масса приобретает консистенцию густой сметаны. На этом этапе рекомендуют добавить к раствору соль. Пропорции добавления на стандартное ведро раствора — 100-150 г. С солью раствор приобретает большую прочность. Для укрепления добавляют цемент, на ведро раствора — примерно полмастерка. А если есть возможность, можно перемешать раствор для возведения стен из огнеупорного кирпича с жидким стеклом.

Готовая смесь должна медленно и равномерно сползать с лопаты, а не растекаться по ней и не стоять комком. Только такой смесью можно качественно заполнить все пустоты. Примерное количество смеси для укладки плашмя 100 кирпичей — 2 ведра (если делать швы 4 категории, примерно — по 5 мм). Если планируется выкладывать русскую печь, это количество нужно увеличить на 20% из-за особенностей кладки.