Полимеры и их применение таблица. Сферы применения полимерных материалов

Полимеры, или макромолекулы - это очень большие молекулы, образованные связями многих молекул малого размера, которые называются составными звеньями, или мономерами. Молекулы настолько велики, что их свойства не изменяются существенным образом при добавлении или удалении нескольких таких составных звеньев. Термин "полимерные материалы" является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность - полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ - мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.

Пластмассы могут быть разделены на две основные группы - термопластические и термореактивные. Термопластические - это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен (члены семейства полиолефинов), полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.

Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные присоединением к поликонденсацией. Полимеры, полученные присоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол - это полимеры присоединения.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Реакция полимеризации - это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта - полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей. Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву п. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Полимеризация - это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Наиболее распространенными полимерами углеводородной природы являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена: Полипропилен получают стереоспецифической полимеризацией пропилена (пропена). Стереоспецифическая полимеризация - это процесс получения полимера со строго упорядоченным пространственным строением. К полимеризации способны многие другие соединения - производные этилена, имеющие общую формулу СН2==СН-X, где Х - различные атомы или группы атомов.

Виды полимеров:

Полиолефины - это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущем полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.

Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.

Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа. Полиэтилен

Около 60% всех пластиков, используемых для упаковки- это полиэтилен, главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения. Полиэтилен высокой плотности (ПЭНД - низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена. -(CH2CH2)n- полиэтилен высокой плотности. Полиэтилен низкой плотности (ПЭВД - высокого давления) имеют ту же химическую формулу, но отличается тем, что его структура разветвленная. -(CH2CHR) n- полиэтилен низкой плотности Где R может быть -H, -(CH2)nCH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД - полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность - довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД - полиэтилен низкого давления. Пленка из ПЭНД - жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию - высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД - это прекрасная преграда влаге. Стойки к жирам, маслам. "Шуршащий" пакет-майка ("шуршавчик"), в который вы упаковываете покупки, изготовлен именно из ПЭНД.

Существует два основных типа ПЭНД. Более "старый" тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную встречаемость реакций по цепному механизму, которые приводят к образованию разветвления, как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более "молодого" типа ПЭВД. При комнатной температуры полиэтилен - довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100 °С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки- это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В его естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность. Один недостаток использования ПЭНД в некоторых из областей применения- его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней срды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД- это наиболее широко применяемый упаковочный полимер, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Это предпочитаемый материал для пленок и сумок, из-за его низкой стоимости. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

ПП - полипропилен. Прекрасная прозрачность (при быстром охлаждении в процессе формообразования), высокая температура плавления, химическая и водостойкость. ПП пропускает водяные пары, что делает его незаменимым для "противозапотевающей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

ПВХ - поливинилхлорид. В чистом виде применяется редко из-за хрупкости и неэлостичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора - диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Идентификация полимеров

У потребителей полимерных пленок очень часто возникает практическая задача по распознаванию природы полимерных материалов, из которых они изготовлены. Основные свойства полимерных материалов, как хорошо известно, определяются составом и структурой их макромолекулярных цепей. Отсюда ясно, что для идентификации полимерных пленок в первом приближении может быть достаточной оценка функциональных групп, входящих в состав макромолекул. Некоторые полимеры благодаря наличию гидроксильных групп (-ОН) тяготеют к молекулам воды. Это объясняет высокую гигроскопичность, например, целлюлозных пленок и заметное изменение их эксплуатационных характеристик при увлажнении. В других полимерах (полиэтилентерефталат, полиэтилены, полипропилен и т.п.) такие группы отсутствуют вообще, что объясняет их достаточно хорошую водостойкость.

Наличие тех или иных функциональных групп в полимере может быть определено на основе существующих и научно обоснованных инструментальных методов исследования. Однако, практическая реализация этих методов всегда сопряжена с относительно большими временными затратами и обусловлена наличием соответствующих видов достаточно дорогостоящей испытательной аппаратуры, требующей соответствующей квалификации для ее использования. Вместе с тем, существуют достаточно простые и "быстрые" практические способы распознавания природы полимерных пленок. Эти способы основаны на том, что полимерные пленки из различных полимерных материалов отличаются друг от друга по своим внешним признакам, физико-механическим свойствам, а также по отношению к нагреванию, характеру их горения и растворимости в органических и неорганических растворителях.

Во многих случаях природу полимерных материалов, из которых изготовлены полимерные пленки, можно установить по внешним признакам, при изучении которых особое внимание следует обратить на следующие особенности: состояние поверхности, цвет, блеск, прозрачность, жесткость и эластичность, стойкость к раздиру и др. Например, неориентированные пленки из полиэтиленов, полипропилена и поливинилхлорида легко растягиваются. Пленки из полиамида, ацетата целлюлозы, полистирола, ориентированных полиэтиленов, полипропилена, поливинилхлорида растягиваются плохо. Пленки из ацетата целлюлозы нестойки к раздиру, легко расщепляются в направлении, перпендикулярном их ориентации, а также шуршат при их сминании. Более стойкие к раздиру полиамидные и лавсановые (полиэтилентерефталатные) пленки, которые также шуршат при сминании. В то же время пленки из полиэтилена низкой плотности, пластифицированного поливинилхлорида не шуршат при сминании и обладают высокой стойкостью к раздиру. Результаты изучения внешних признаков исследуемой полимерной пленки следует сравнить с характерными признаками, приведенными в табл. 1, после чего уже можно сделать некоторые предварительные выводы.

Таблица 1. Внешние признаки

Вид полимера

Механические признаки

Состояние поверхности на ощупь

Цвет

Прозрачность

Блеск

Мягкая, эластичная, стойкая к раздиру

Мягкая, гладкая

Бесцветная

Прозрачная

Слегка маслянистая, гладкая, сладошуршащая

Бесцветная

Полупрозрачная

Жестковатая, слегка эластичная, стойкая к раздиру

Сухая, гладкая

Бесцветная

Полупрозрачная или прозрачная

Жестковатая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Мягкая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Жесткая, стойкая к раздиру

Бесцветная

Прозрачная

Сухая, гладкая

Бесцветная или светло-желтая

Полупрозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная или с голубоватым оттенком

Прозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная, с желтоватым или голубоватым оттенком

Высокопрозрачная

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная

Целлофан

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная


Однако, как нетрудно уяснить из анализа данных, приведенных в табл. 2, не всегда по внешним признакам можно однозначно установит природу полимера, из которого изготовлена пленка. В этом случае, необходимо попытаться количественно оценить какие-нибудь физико-механические характеристики имеющегося образца полимерной пленки. Как видно, например, из данных, приведенных в табл. 2, плотность некоторых полимерных материалов (ПЭНП, ПЭВП, ПП) меньше единицы, а, следовательно, образцы этих пленок должны "плавать" в воде. С тем, чтобы уточнить вид полимерного материала, из которого изготовлена пленка, следует определить плотность имеющегося образца путем измерения его веса и вычисления или измерения его объема. Уточнению природы полимерных материалов способствуют и экспериментальные данные по таким их физико-механическим характеристикам как предел прочности и относительное удлинение при одноосном растяжении, а также температура плавления (табл. 2). Кроме того, как видно из анализа данных, приведенных в табл. 2, проницаемость полимерных пленок по отношению к различным средам также существенно зависит от вида материала, из которого они изготовлены.

Таблица 2. Физико-механические характеристики при 20°C

Вид полимеров

Плотность кг/м 3

Прочность при разрыве, МПа

Относительное удлинение при разрыве, %

Проницаемость по водяным парам, г/м 2 за 24 часа

Проницаемость по кислоробу, см 3 /(м 2 хатм) за 24 часа

Проницаемость по СО 2 , см 3 /(м 2 хатм) за 24 часа

Температура плавления, 0 С

Целлофан


Помимо отличительных особенностей в физико-механических характеристиках следует отметить и существующие различия в характерных признаках различных полимеров при их горении. Этот факт позволяет использовать на практике так называемый термический метод идентификации полимерных пленок. Он заключается в том, что образец пленки поджигают и выдерживают в открытом пламени в течение 5-10 секунд, фиксируя при этом следующие свойства: способность к горению и его характер, цвет и характер пламени, запах продуктов горения и др. Характерные признаки горения наиболее отчетливо наблюдаются в момент поджигания образцов. Для установления вида полимерного материала, из которого изготовлена пленка, необходимо сравнить результаты проведенного испытания с данными о характерных особенностях поведения полимеров при горении, приведенными в табл. 3.

Таблица 3. Характеристики горения. Химическая стойкость

Вид полимера

Горючесть

Окраска пламени

Запах продуктов горения

Хим. стойкость к кислотам

Хим. стойкость к щелочам

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Зеленоватая с копотью

Хдористого водорода

Трудно воспламеняется и гаснет

Зеленоватая с копотью

Хлористого водорода

Отличная

Отличная

Загорается и горит вне пламени

Желтоватая с сильной копотью

Сладковатый, неприятный

Отличная

Горит и самозатухает

Голубая, желтоватая по краям

Жженого рога или пера

Трудно воспламеняется и гаснет

Светящаяся

Сладковатый

Отличная

Отличная

Трудно воспламеняется и гаснет

Желтоватая с копотью

Жженой бумаги

Горит в пламени

Искрящаяся

Уксусной кислоты

Целлофан

Горит в пламени

Жженой бумаги


Как видно из данных, приведенных в табл. 3, по характеру горения и запаху продуктов горения полиолефины (полиэтилены и полипропилен) напоминают парафин. Это вполне понятно, поскольку элементарный химический состав этих веществ один и тот же. Отсюда возникает сложность в различении полиэтиленов и полипропилена. Однако при определенном навыке можно отличить полипропилен по более резким запахам продуктов горения с оттенками жженой резины или горящего сургуча.

Таким образом, результаты комплексной оценки отдельных свойств полимерных пленок в соответствии с изложенными выше методами позволяют в большинстве случаев достаточно надежно установить вид полимерного материала, из которого изготовлены исследованные образцы. При возникающих затруднениях в определении природы полимерных материалов, из которых изготовлены пленки, необходимо провести дополнительные исследования их свойств химическими методами. Для этого образцы могут быть подвергнуты термическому разложению (пиролизу), при этом в продуктах деструкции определяется наличие характерных атомов (азота, хлора, кремния и т.п.) или групп атомов (фенола, нитрогрупп и т.п.), склонных к специфическим реакциям, в результате которых обнаруживается вполне определенный индикаторный эффект. Изложенные выше практические методы определения вида полимерных материалов, из которых изготовлены полимерные пленки, носят в известной степени субъективный характер, а, следовательно, не могут гарантировать их сто процентной идентификации. Если такая необходимость все же возникает, то следует воспользоваться услугами специальных испытательных лабораторий, компетентность которых подтверждена соответствующими аттестационными документами.

Показатель текучести расплава

Показатель текучести расплава полимерного материала это масса полимера в граммах, выдавливаемая через капилляр при определенной температуре и определенном перепаде давления за 10 минут. Определение величины показателя текучести расплава производят на специальных приборах, называемых капиллярными вискозиметрами. При этом размеры капилляра стандартизованы: длина 8,000±0,025 мм; диаметр 2,095±0,005 мм; внутренний диаметр цилиндра вискозиметра составляет 9,54±0,016 мм. Не целочисленные значения размеров капилляров связанны с тем, что впервые методика определения показателя текучести расплава появилась в странах с английской системой мер. Условия, рекомендуемые для определения показателя текучести расплава, регламентируются соответствующими стандартами. ГОСТ 11645-65 рекомендует нагрузки 2,16 кг, 5 кг и 10 кг и температуры, кратные 10°C. ASTM 1238-62T (США) рекомендует температуры от 125°C до 275°C и нагрузки от 0,325 кг до 21,6 кг. Наиболее часто показатель текучести расплава определяют при температуре 190°C и нагрузке 2,16 кг.

Величина показателя текучести для различных полимерных материалов определяется при различных нагрузках и температурах. Поэтому надо иметь в виду, что абсолютные величины показателя текучести сравнимы лишь для одного и того же материала. Так, например, можно сравнивать величину показателя текучести расплава полиэтилена низкой плотности различных марок. Сравнение же величин показателей текучести полиэтилена высокой и низкой плотности не дает возможности непосредственно сопоставить текучесть обоих материалов. Поскольку первый определяется при нагрузке в 5 кг, а второй при нагрузке в 2,16 кг.

Следует отметить, что вязкость расплавов полимеров существенно зависит от приложенной нагрузки. Так как показатель текучести того или иного полимерного материала измеряют лишь при одном значении нагрузки, то этот показатель характеризует только одну точку на всей кривой течения в области относительно низких напряжений сдвига. Поэтому полимеры, несколько различающиеся по разветвленности макромолекул или по молекулярной массе, но с одинаковым показателем текучести расплава, могут вести себя по-разному в зависимости от условий переработки. Однако, несмотря на это, по показателю текучести расплава для многих полимеров устанавливают границы рекомендуемых технологических параметров процесса переработки. Значительное распространение этого метода объясняется его быстротой и доступностью. Экструзионные процессы производства пленок требуют высоких вязкостей расплава, в связи с этим применяются марки сырья с низким показателем текучести расплава.

По материалам компании «НПЛ Пластик»

Подробности Опубликовано: 25 Декабрь 2013

Термин полимер, широко используется в наше время в производстве пластмасс и композитной промышленности, довольно часто слово «полимер» используют для обозначения пластиков. На самом деле, термин " полимер " означает намного-намного больше.

Специалисты компании ООО НПП «Симплекс» решили рассказать подробно, что же такое полимеры:
Полимер – вещество с химическим составом молекул соединенных в длинные повторяющиеся цепочки. Благодаря этому все материалы, изготовленные из полимеров, обладают уникальными свойствами и могут быть адаптированы в зависимости от их назначения.
Полимеры бываю как искусственного, так и естественного происхождения. Самым распространенным в природе является натуральный каучук, который является чрезвычайно полезным и используется человечеством уже несколько тысяч лет. Каучук (резина) обладает отличной эластичностью. Это результат того, что молекулярные цепи в молекуле чрезвычайно длинные. Абсолютно все виды полимеров обладают свойствами повышенной упругости, однако вместе с этими свойствами, могут демонстрировать и широкий спектр дополнительных полезных свойств. В зависимости от назначения, полимеры могут быть тонко синтезированы для максимально удобного и выгодного использования их определенных свойств.

Основные физические свойства полимеров:

  • Ударопрочность
  • Жесткость
  • Прозрачность
  • Гибкость
  • Упругость

    Ученые химики давно заметили одну интересную особенность, связанную с полимерами: если посмотреть на полимерную цепь под микроскопом, то можно увидеть, что визуальная структура и физические свойства молекулы цепочки будет имитировать реальные физические свойства полимера.

    Например, если полимерная цепь состоит из туго скрученных между нитей мономеров и их трудно разделить, то, скорее всего, этот полимер будет сильным и упругим. Или, если полимерная цепь на молекулярном уровне проявляет эластичность, скорее всего, и полимер будет иметь гибкие свойства.

    Переработка полимеров
    Большинство изделий из полимеров можно изменить и деформировать под воздействием высоких температур, однако на молекулярном уровне сам полимер может, не изменится и из него можно будет создать новое изделие. Например, можно расплавить пластиковую тару и бутылки и затем сделать из этих полимеров пластиковые контейнеры или детали автомобилей.

    Примеры Полимеров
    Ниже приводится список самых распространенных полимеров, используемых в наше время, а также их основное применение:

    • Полипропилен (PP) – Производство ковровых покрытий, тара для продуктов, фляги.
    • Неопрен – Гидрокостюмы
    • Поли-винил-хлорид) (PVC) - Производство трубопроводов, профнастил
    • Полиэтилен низкой плотности (LDPE) - Продуктовые пакеты
    • Полиэтилен высокой плотности (HDPE) – Тара для моющих средств, бутылки, игрушки
    • Полистирол (PS) - Игрушки, пены, бескаркасная мебель
    • Политетрафторэтилен (ПТФЭ, фторопласт) - антипригарные сковородки, электрическая изоляция
    • Полиметилметакрилат (ПММА, плексигласа, оргстекла) – офтальмология, производство акриловых ванн, осветительная техника
    • (ПВА) - Краски, клеи

Достоинства полимерных материалов - достаточно высокие прочность и износостойкость, хорошие антифрикционные свойства и химическая стойкость. Ремонт деталей с применением полимерных материалов не требует сложного оборудования, малотрудоемок, сопровождается невысоким нагревом детали (250-320 °С), допускает большие износы (1-1,2 мм), в ряде случаев не требует последующей механической обработки. Применяется для заделки трещин, вмятин, пробоин, раковин, отколов, для восстановления размеров изношенных деталей, для изготовления быстроизнашивающихся деталей или их отдельных частей, для противокоррозионной защиты. Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Традиционно изделия из полимеров отличаются надежностью и высоким качеством.

Применение полимерных материалов в домашнем хозяйстве с самого начала было одной из первых задач промышленности, производящей полимеры. Для этого было много предпосылок. Их легко окрашивать в любые цвета, и благодаря этому они могут украсить наши будни.

Полиэтиленовые ведра, тазы много легче металлических - вот и желанное облегчение труда. На предприятиях общественного питания мы встречаем небьющуюся легкую пластмассовую посуду. При этом тарелки, чашки и другая утварь, получаемые на основе меламиновой смолы, блестяще проявили себя в эксплуатации.

Из ПВХ и полиэтилена высокопроизводительными способами изготавливаются бутылки для уксуса и масла.

Полимерные материалы находят все большее применение в производстве мебели. Декоративные прессованные пленки придают столам, шкафам и другим предметам праздничный вид и делают их стойкими по отношению к таким воздействиям, которых не выносит покрытие из дерева. При этом за ними чрезвычайно легко ухаживать.

Моющиеся обои из пенистого материала обеспечивают одновременно уют и праздничную обстановку в помещении.

Современные надежные в эксплуатации покрытия для пола, изготавливаемые из полимерных материалов, также облегчают уборку помещений. Особо следует отметить, что для их изготовления можно применять отходы переработки полимеров.

Сегодня никого уже не удивляет водопроводная арматура из полистирола, поливинилхлорида, полиэтилена или аминопластов. Привычным стал телефонный аппарат из полимерных материалов.

Приблизительно 25% производимых пластмасс в самых разнообразных формах находят применение в строительстве. О традиционном применении в качестве покрытия полов, обшивки внутренних водостоков, санитарных объектов и т.п. мы уже не будем говорить.

В последние годы во все большем объеме применяются элементы конструкций заводского изготовления, в которых преобладают полимерные материалы. Их незначительная масса приносит выгоды при транспортировке и монтаже. Высокая светопроницаемость, способность материала окрашиваться в любой цвет, незначительные расходы при эксплуатации-вот определяющие свойства этих новых материалов.

Отличные теплоизоляционные свойства, особенно пенопластов, также будоражат мысли архитекторов и строителей. Светопрозрачные купола делают возможным бестеневое освещение. Неразрушающиеся прозрачные элементы, как правило из стеклопластиков, заменяют традиционные конструкции из армированного бьющегося стекла. Такими сводами при толщине составляющих их элементов не более 2 мм можно перекрывать пролеты шириной до 12 м. Такие конструкции применяют, например, в строительстве теплиц, так как они не корродируют во влажной атмосфере и, кроме того, проницаемы для света. Можно было бы назвать еще много других примеров применения полимеров для покрытия помещений. Для перекрытия стадионов уже применяют панели с элементами большой площади.

Известны пластмассовые конструкции диаметром до 43 м и высотой до 36 м, которые служат для защиты радарных установок от атмосферного влияния. (Высокочастотное излучение проходит через стеклопластик, почти не теряя своей мощности.) Внушительные размеры сооружения подчеркивают возможность полимерных материалов. Стоит посмотреть и на смонтированные на головокружительной высоте цилиндры, защищающие антенну телевизионной башни от обледенения (63).

В последние годы в строительстве внедряются многослойные легкие строительные элементы для перекрытий (64). Так называемые сандвич-конструкции состоят из покрывающих слоев на основе алюминия, асбоцементного или жестковолокнистого полотна, которые соединены с жестким пенополиуретаном или пенополистиролом. При толщине элементов от 50 до 80 мм в зависимости от системы покрывающих слоев масса поверхности составляет от 6 до 25 кг/м2. Температурная область эксплуатации простирается до 100 °С.

Свыше 30% производимых пластмасс используется в машино- и аппаратостроении в качестве конструкционных материалов. В машиностроении в центре внимания находится, конечно, экономичность изготовления элементов конструкций. Уплотнения всех видов, зубчатые колеса с осями и втулками, дисковые кулачки, осевые и радиальные колеса, элементы сцепления, подшипники скольжения, катушки зубчатых передач и многие другие профильные детали оказались весьма эффективными в эксплуатации. Большая жесткость, способность точно сохранять заданные размеры, хорошее скольжение и износостойкость -достоинства, которые обеспечивают многофункциональность внедряемых полимерных материалов.

Наряду с большинством применяемых до сих пор в машиностроении пластмасс (твердые полиамиды, пресс-массы на основе фенольной смолы), сегодня могли бы найти новые области применения прежде всего стеклопластики на основе термопластичного связующего. Если массовое содержание стекловолокна достигает 30%, предел прочности на растяжение в 2-3 раза превышает этот показатель для неусиленного полимера, а модуль упругости даже в 3-4 раза. Напротив, тепловое линейное расширение составляет от 1/4 до х/з исходной величины, относительное удлинение при разрыве-только около 1/20. Сверх того уменьшается склонность к раздиру, что также указывает на увеличение работоспособности полимера.

Полиуретановые эластомеры также открывают новые технические возможности для машиностроения. Поскольку этот материал обладает и коррозионной стойкостью, отпадает необходимость поверхностной обработки и прежде всего нанесения металлических и неметаллических защитных слоев. Это существенно снижает затраты на изготовление и поддержание изделий в исправном состоянии.

В аппаратостроении, особенно для химической промышленности, значение полимеров определяется их высокой коррозионной стойкостью. При температуре до 100 °С и умеренных механических нагрузках имеются благоприятные предпосылки для замены высоколегированных сталей полимерными материалами. Поливинилхлорид, полиэтилен высокого давления, полипропилен, полибутен, политетрафторэтилен и стеклопластики-наиболее интересные в этом отношении материалы. Для конструкций, на которые вместе с механическими нагрузками действует агрессивная среда, особенно важную роль играют стеклопластики на основе термопластичных смол.

Трубы из термопластов можно производить экструзией при внешнем диаметре до 1200 мм, а методом обмотки изготавливают трубы диаметром до 3000 мм.

Складские и транспортные резервуары (65) можно изготавливать вместимостью до 85 м3 (железнодорожные цистерны) или до 22 м3 (автотрейлеры для уличного движения). Предпочтительный материал - стеклопластики. Существуют хранилища для соляной кислоты диаметром до 9 м и высотой до 7 м.

Внедрение пластмасс в область технологических аппаратов и соответствующих систем трубопроводов также весьма значительно. Очень эффективно использование полимерных материалов в вентиляционных установках для вытяжки агрессивных газов. Очистные башни для корро-зионноактивных отходящих газов, дымовые трубы, вентиляционные элементы для колпачковых тарелок, гальванотехническая аппаратура, установки для получения хлора и щелочей электролитическим методом, реакционные колонны, насосы и многие другие подобные области применения-вот примеры использования полимеров в качестве конструкционных материалов. Благодаря стойкости к истиранию, химической инертности и легкости обработки в каждом конкретном случае может быть достигнута экономия, которая складывается из уменьшения затрат на поддержание установок в исправности и увеличения длительности и безопасности их эксплуатации по сравнению с аналогичными из металлических или других материалов.

Упаковочная техника потребляет 20-25% всех производимых пластмасс, то есть столько же, сколько строительство. Традиционные упаковочные материалы, такие как бумага, дерево, веревки и ткани из растительных волокон, гораздо быстрее приходят в негодность. Полимерные пленки и пенопласты не только заменяют эти «старомодные» материалы, но и вызвали к жизни принципиально новую технологию упаковки.

Упаковочные пленки удовлетворяют более широким требованиям, чем традиционные материалы. Они прозрачны и на них можно печатать это обеспечивает упаковке привлекательный вид. Физиологическая инертность, так же как непроницаемость для газов и водяных паров, особенно ценятся при упаковке пищевых продуктов. Пленки бывают полиэтиленовые, полипропиленовые, поливинилхлоридные, полиамидные, из поливинилового спирта и целлофана толщиной от 20 до 200 мкм. Конечно, у них разные значения прочностных характеристик и проницаемости для газов и водяного пара. Для некоторых из этих материалов прочность при растяжении может быть достаточна высока, и тогда они могут удовлетворять требованиям, которые предъявляются, например, к мешкам (в них загружают до 50 кг материала и складывают в штабели до 30 слоев).

В тех случаях, когда требуется непроницаемый для газов материал, применяют так называемые комбинированные пленки. Наиболее известны дублированные пленочные материалы: полиэтилен-целлофан, полиэтилен-полиамид, поливинил-хлорид-целлофан, поливинилиденхлорид - целлофан. Для специальной упаковки высокочувствительных технических приборов, особенно для морских перевозок нужны трехслойные пленки. Комбинации полиэтилен - полиамид - полиэтилен, полиэтилен-полипропилен - полиэтилен, полиэтилен - поликарбонат - полиэтилен отвечают самым суровым требованиям.

Полимерные пленки открыли новые возможности для упаковочной техники. Особыми технологическими свойствами обладают так называемые термоусадочные пленки. При их получении фиксируются внутренние напряжения, которые позднее при воздействии тепла «снимаются» и таким образом возникает усадка.

Пленка охватывает предназначенное для упаковки изделие, и после завершения усадки оно готово к транспортированию, защищено от пыли и влаги. Отпадает необходимость в дополнительной перевязке. Благодаря компактности упаковки появляется возможность оптимально использовать загружаемое пространство, что равносильно увеличению полезного объема транспорта на 20%. Легко представить себе, какое народнохозяйственное значение имеет связанное с этим повышение степени загрузки транспорта.

Другие новые возможности в упаковочной технике появились благодаря пенопла-стам, прежде всего пенополистиролу с плотностью 25-30 кг/м3. В 1 м3 этого материала содержится около 350 000 сферических ячеек, разделенных стенками толщиной 1-2 мкм. Материал содержит до 97% воздуха. Воздух, заключенный в ячейках, гасит толчки и вибрацию, случающиеся при транспортировке. Прочность пенопла-стов должна быть достаточна для того, чтобы выдержать изделие. Внутри блока легко сделать выемку, точно соответствующую внешней форме изделия.

Новая упаковочная техника особенно ценна для транспортировки хрупких дорогих высококачественных приборов, например электронных ламп, пишущих машин, телевизионных аппаратов, так как позволяет существенно ограничить повреждения. Теплозащитная упаковка на определенное время без дополнительных мероприятий гарантирует, что температура транспортируемых товаров, чувствительных к воздействию тепла или холода, будет поддерживаться на определенном уровне. Так, для сохранения рыбы, транспортируемой в ящиках из пенополистирола, требуется только около половины обычно необходимого льда.

Зато мусор, возникающий после использования полимерных упаковочных материалов, также породил новые проблемы. Часть его не горит, а при горении некоторых видов полимеров отщепляются ядовитые продукты. Гнить пластмассовый мусор не может.

Для полного изменения упаковочной техники требуется дальнейшее развитие этих материалов и разработа способов безопасного уничтожения образующегося пластмассового мусора.

Пластмассы с их прекрасными диэлектрическими свойствами, можно сказать, подтолкнули развитие электротехники и электроники. Корпуса катушек и контактов, штепсельные соединения, монтажные платы, цоколи реле, программные переключатели, а также печатные платы - вот только некоторые примеры применения полимеров в этих важных отраслях промышленности.

Высокочастотный кабель с семью коаксиальными системами своей конструкцией и мощностью также обязан названному выше специфическому свойству пластмасс.

Раньше задачу электроизоляции возлагали на керамику, фарфор и резину. Сегодня возросшие требования к электроизоляционным свойствам и необходимость снижения электрических потерь удовлетворяется почти исключительно полимерами. Так, в высокочастотной технике требуется независимость эксплуатационных свойств материала от частоты и температуры. Кроме того, эти свойства не должны изменяться под влиянием старения, например во влажном теплом климате. Отщепление коррозионноактивных веществ под влиянием повышенной температуры и высокой влажности в процессе эксплуатации часто ограничивает работоспособность металлических контактов.

В последнее время в качестве изоляционных материалов нашли применение жесткие формовочные массы на основе термореактивных смол: фенольной, мелами-новой, мочевинной, полиэфирной и эпоклщной. Эти материалы, свойства которых варьируют, подбирая смолу, наполнитель и другие компоненты, отличаются теплостойкостью, незначительным тепловым расширением и формоустойчивостью при повышенных температурах. Особо ценятся их устойчивость к действию органических растворителей, незначительные воспламеняемость и горючесть и ряд других отличительных черт.

Внедрение термопластов в электротехнику было поначалу существеннее всего з области кабельной изоляции. Высокая инертность и хорошие технологические свойства позволили все больше заменять резину, в частности для изоляции проводов.

В электронике высокоэкономичное массовое производство сложных деталей, особенно с учетом возрастающей их миниатюризации, создало хорошие предпосылки J.TJI внедрения термопластов. Стеклопластики на основе термопластов по прочностным и деформационным свойствам сопоставимы уже с материалами на термореактивной основе. Там, где до сих пор повышенным требованиям к стабильности форм при тепловом воздействии могли удовлетворить только термореактивные полимеры, теперь имеется широкий спектр материалов.

Хотя электрическим свойствам материалов мы придаем первостепенное значение, всегда надо сравнивать и их стоимости. Именно поэтому мы находим в управляющей и регулирующей, передающей технике и других смежных областях различные виды пластмасс, соответствующие этим конкретным областям.

Заключение.

В настоящее время полимеры вошли в каждый дом, а применение полимерных материалов охватило множество самых различных сфер, которые, казалось бы, не имеют ничего общего между собой. Каждый год растет уровень потребления полимерных материалов и спрос на них, расширяется сфера применения и рынок полимерной продукции. Современные технологии позволяют создать более качественные и совершенные изделия из полимерных материалов, сделать их экологичнее и безопаснее. Большим преимуществом применяемой полимерной продукции является то, что она подлежит вторичной переработке, и этому вопросу уделяется все больше внимания. Таким образом, полимеры без преувеличения можно назвать материалами будущего.


В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями, либо методом нанесения растворов полимеров на движущуюся ленту, либо методом каландрования полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Каландрование –обработка полимеров на каландрах, состоящих из двух или более валков, расположенных параллельно и вращающихся навстречу друг другу.

Лаки – растворы пленкообразующих веществ в органических растворителях. Кроме полимеров, лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи – композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др. Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи – в результате вулканизации.

Пластмассы – это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации – в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное – при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.



Эластомеры – это полимеры и композиты на их основе, для которых температурный интервал температуры стеклования – температуры текучести достаточно высок и захватывает обычные температуры.

Кроме полимеров в состав пластмасс и эластомеров входят пластификаторы, красители и наполнители. Пластификаторы – например, диоктилфталат, дибутилсебацинат, хлорированный парафин – снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань.

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300–2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители – борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами – редокситы (с редоксгруппами, или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров, обладающих различными физическими и химическими свойствами.

Рассмотрим некоторые полимеры и композитов на их основе.

Полиэтилен [-CH2-CH2-] n – термопласт, получаемый методом радикальной полимеризации при температуре до 320 0C и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давлений имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет. Полиэтилен – хороший диэлектрик, может эксплуатироваться в пределах температур от –20 до +100 0 C. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен [-CH(CH 3)-CH 2 -] n – кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120–140 0 C), нежели полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Полистирол – термопласт, получаемый радикальной полимеризацией стирола. Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях, обладает высокой механической прочностью и диэлектрическими свойствами и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH 2 -CHCl-] n – термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей; растворим в циклогексаноне, тетрагидрофуране, ограничено – в бензоле и ацетоне; трудногорюч, механически прочен; диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт) [-CF 2 -CF 2 -] n – термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям; прекрасный диэлектрик; имеет очень широкие температурные пределы эксплуатации (от –270 до +260 0 C). При 400 0 C разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглас)

– термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен; стоек к действию кислот; атмосферостоек; растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах; бесцветен и оптически прозрачен. Применяется в электротехнике как конструкционный материал, а также как основа для клеев.

Полиамиды – термопласты, содержащие в основной цепи амидогруппу -NHCO-, например, поли-ε-капрон [-NH-(CH 2) 5 -CO-] n , полигексаметиленадипинамид (нейлон) [-NH-(CH 2) 5 -NH-CO-(CH 2) 4 -CO-] n ; полидодеканамид [-NH-(CH 2) 11 -CO-] n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0÷1,3 г/см 3 . Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами; устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны – термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-групп) с полиспиртами, например, с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов. Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий.

Полиэфиры – полимеры с общей формулой НО[-R-О-] n Н или [-OC-R-COO-R"-O-] n . Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров оксикислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические – также к действию растворов минеральных кислот и солей. Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и фотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (CK), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают CK общего и специального назначения. К CK общего назначения относят бутадиеновый [-CH 2 -CH=CH-CH 2 -] n и бутадиенстирольный [-СН 2 -СН=СН-СН 2 -] n - - [-CH 2 -CH(C 6 H 5)-] n . Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из CK специального назначения, кроме эластичности, характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиен-нитрильный CK [-CH 2 -CH=CH-CH 2 -] n – [-CH 2 -CH(CN)-] n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый CK [-CH 2 -C(Cl)=CH-CH 2 -] n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-С(СН 3) 2 -СН 2 -] n -[-СН 2 С(СН 3)=СН-CН 2 -] m . К наиболее применяемым относятся бутадиенстирольный (более 40 %), бутадиеновый (13 %), изопреновый (7 %), хлоропреновый (5 %) каучуки и бутилкаучук (5 %). Основная доля каучуков. (60 - 70 %) идет на производство шин, около 4 % – на изготовление обуви

Кремнийорганические полимеры (силиконы) – содержат атомы кремния в элементарных звеньях макромолекул. Большой вклад в разработку кремнийорганических полимеров внес российский ученый К. А. Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность; они не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях. Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R 2)-O-] n , например диметилсилоксановый и метилвинилсилоксановый имеют плотность 0,96 – 0,98 г/см 3 , температуру стеклования 130 0 C. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300 0 C, обладают атмосферостойкостью, высокими электроизоляционными свойствами. Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами. Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу для клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов , на основе мочевиноформальдегидных смол – аминопластов . Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков.

Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборов и аппаратов, выключателей, плафонов, тепло- и звукоизоляционных материалов и др.).

В настоящее время около 1/3 всех пластмасс применяется в электротехнике, электронике и машиностроении, 1/4 – в строительстве и примерно 1/5 – для упаковки. Растущий интерес к полимерам можно показать на примере автомобилестроения. Многие специалисты оценивают уровень совершенства автомобиля по доле использования в нем полимеров. Например, масса полимерных материалов возросла от 32 кг у ВАЗ-2101 до 76 кг у ВАЗ-2108. За рубежом средняя масса пластмасс составляет 75÷120 кг на автомашину.

Таким образом, полимеры находят чрезвычайно широкое применение в виде пластмасс и композитов, волокон, клеев и лаков, причем масштабы и области их использования постоянно возрастают.

Вопросы для самоконтроля:

1. Что такое полимеры? Их виды.

2. Что такое мономер, олигомер?

3. В чем заключается метод получения полимеров полимеризацией? Привести примеры.

4. В чем заключается метод получения полимеров поликонденсацией? Привести примеры.

5. В чем заключается радикальная полимеризация?

6. В чем заключается ионная полимеризация?

7. В чем заключается полимеризация в массе (блоке)?

8. В чем заключается эмульсионная полимеризация?

9. В чем заключается суспензионная полимеризация?

10. В чем заключается газовая полимеризация?

11. В чем заключается поликонденсация в расплаве?

12. В чем заключается поликонденсация в растворе?

13. В чем заключается поликонденсация на межфазной границе?

14. Какова форма и структура макромолекул полимеров?

15. Чем характеризуется кристаллическое состояние полимеров?

16. Каковы особенности физического состояния аморфных полимеров?

17. Каковы химические свойства полимеров?

18. Каковы физические свойства полимеров?

19. Какие материалы получают на основе полимеров?

20. Каково применение полимеров в различных отраслях промышленности?

Вопросы для самостоятельной работы:

1. Полимеры и их применение.

2. Пожарная опасность полимеров.

Литература:

1. Семенова Е. В., Кострова В. Н., Федюкина У. В. Химия. – Воронеж: Научная книга – 2006, 284 с.

2. Артименко А.И. Органическая химия. - М.: Высш. шк. – 2002, 560 с.

3. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

4. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

5. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

6. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

Лекция 17 (2 ч)

Тема 11. Химическая идентификация и анализ вещества

Цель лекции: ознакомится с качественным и количественным анализом веществ и дать общую характеристику, применяемых при этом методов

Изучаемые вопросы:

11.1. Качественный анализ вещества.

11.2. Количественный анализ вещества. Химические методы анализа.

11.3. Инструментальные методы анализа.

11.1. Качественный анализ вещества

В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания. Наука, которая занимается качественным и количественным анализом называется аналитической химией . Анализ проводят поэтапно: сначала проводят химическую идентификацию вещества (качественный анализ), а затем определяют, сколько вещества находится в образце (количественный анализ).

Химическая идентификация (обнаружение) – это установление вида и состояния фаз, молекул, атомов, ионов и других составных частей вещества на основе сопоставления экспериментальных и соответствующих справочных данных для известных веществ. Идентификация является целью качественного анализа.При идентификации обычно определяется комплекс свойств веществ: цвет, фазовое состояние, плотность, вязкость, температуры плавления, кипения и фазового перехода, растворимость, электродный потенциал, энергия ионизации и (или) т.д. Для облегчения идентификации созданы банки химических и физико-химических данных. При анализе многокомпонентных веществ часто используются универсальные приборы (спектрометры, спектрофотометры, хроматографы, полярографы и др.), снабженные компьютерами, в памяти которых имеется справочная химико-аналитическая информация. На базе этих универсальных установок создается автоматизированная система анализа и обработки информации.

В зависимости от вида идентифицируемых частиц различают элементный, молекулярный, изотопный и фазовый анализы. Поэтому наибольшее значение имеют методы определения, классифицируемые по характеру определяемого свойства, или по способу регистрации аналитического сигнала:

1) химические методы анализа ,которые основаны на применении химических реакций. Они сопровождаются внешними эффектами (образование осадка, выделение газа, появление, исчезновение или изменение окраски);

2) физические методы , которые основаны на определенной взаимосвязи между физическими свойствами вещества и его химическим составом;

3) физико-химические методы , которые основаны на физических явлениях, сопровождающих химические реакции. Они наиболее распространены вследствие высокой точности, селективности (избирательности) и чувствительности. В первую очередь будут рассмотрены элементный и молекулярный анализы.

В зависимости от массы сухого вещества или объема раствора анализируемого вещества различают макрометод (0,5 – 10 г или 10 – 100 мл), полумикрометод (10 – 50 мг или 1 – 5 мл), микрометод (1-5 Гмг или 0,1 – 0,5 мл) и ультрамикрометод (ниже 1 мг или 0,1 мл) идентификаций.

Качественный анализ характеризуется пределом обнаружения (обнаруженным минимумом) сухого вещества, т. е. минимальным количеством надежно идентифицируемого вещества и предельной концентрацией раствора. В качественном анализе применяются только такие реакции, пределы обнаружения которых не менее 50 мкг.

Имеются некоторые реакции, которые позволяют обнаружить то или иное вещество или ион в присутствии других веществ или других ионов. Такие реакции называются специфическими . Примером таких реакций могут быть обнаружение ионов NH 4 + действием щелочи или нагреванием

NH 4 Cl + NaOH = NH 3 ­ + H 2 O + NaCl

или реакция иода с крахмалом (темно-синее окрашивание) и т.д.

Однако в большинстве случаев реакции обнаружения вещества не являются специфическими, поэтому мешающие идентификации вещества переводят в осадок, слабодиссоциирующее или комплексное соединение. Анализ неизвестного вещества проводят в определенной последовательности, при которой то или иное вещество идентифицируют после обнаружения и удаления, мешающих анализу других веществ, т.е. применяют не только реакции обнаружения веществ, но и реакции отделения их друг от друга.

Следовательно, качественный анализ вещества зависит от содержания примесей в нем, т. е. его чистоты. Если примеси содержатся в очень малых количествах, то их называют «следами». Термины отвечают молярным долям в %: «следы» 10 -3 ÷ 10 -1 , «микроследы» – 10 -6 ÷ 10 -3 , «ультрамикроследы» - 10 -9 ÷ 10 -6 , субмикроследы – менее 10 -9 . Вещество называется высокочистым при содержании примесей не более 10 -4 ÷ 10 -3 % (мол. доли) и особо чистым (ультрачистым) при содержании примесей ниже 10 -7 % (мол. доли). Имеется и другое определение особо чистых вещества, согласно которому они содержат примеси в таких количествах, которые не влияют на основные специфические свойства веществ. Однако значение имеет не любая примесь, а примеси, оказывающие влияние на свойства чистого вещества. Такие примеси называются лимитирующими или контролирующими.

При идентификации неорганических веществ проводят качественный анализ катионов и анионов. Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. Как и при любом виде качественного анализа, в ходе реакций образуются труднорастворимые соединения, окрашенные комплексные соединения, происходит окисление или восстановление с изменением цвета раствора. Для идентификации с помощью образования труднорастворимых соединений используют как групповые, так и индивидуальные осадители.

При идентификации катионов неорганических веществ групповыми осадителями для ионов Ag + , Pb 2+ , Hg 2+ служит NaCl; для ионов Ca 2+ , Sr 2+ , Ba 2+ - (NH 4) 2 CO 3 , для ионов Al 3+ , Cr 3+ , Fe 2+ , Fe 3+ , Mn 2+ , Co 2+ , Ni 2+ , Zn 2+ и др. - (NH 4) 2 S.

Если присутствует несколько катионов, то проводят дробный анализ , при котором осаждаются все труднорастворимые соединения, а затем обнаруживаются оставшиеся катионы тем или иным методом, либо проводят ступенчатое добавление реагента, при котором сначала осаждаются соединения с наименьшим значением ПР, а затем соединения с более высоким значением ПР. Любой катион можно идентифицировать с помощью определенной реакции, если удалить другие катионы, мешающие этой идентификации. Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами (табл. 9).